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Abstract

We propose that similarity judgments are inferences
about generative processes, and that two objects appear
similar when they are likely to have been generated by
the same process. We present a formal model based
on this idea, and suggest that it may be particularly
useful for explaining high-level judgments of similarity.
We compare our model to featural and transformational
accounts, and describe an experiment where it outper-
forms a transformational model.
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Every object is the outcome of a generative process.
An animal grows from a fertilized egg into an adult, a
city develops from a settlement into a metropolis, and
an artifact is assembled from a pile of raw materials ac-
cording to the plan of its designer. Observations like
these motivate the generative approach, which proposes
that an object may be understood by thinking about the
process that generated it. The promise of the approach
is that apparently complex objects may be produced by
simple processes, an insight that has proved productive
across disciplines including biology (Thompson, 1961),
physics (Wolfram, 2002), and architecture (Alexander,
1979). To give two celebrated examples from biology,
the shape of a pinecone and the markings on a cheetah’s
tail can be generated by remarkably simple processes of
growth. These patterns can be characterized much more
compactly by describing their causal history than by at-
tempting to describe them directly.

Leyton has argued that the generative approach pro-
vides a general framework for understanding cognition.
Applications of the approach can be found in generative
theories of memory (Leyton, 1992), categorization (An-
derson, 1991; Feldman, 1997; Rehder, 2003), visual
perception (Leyton, 1992), speech perception (Liber-
man et al., 1967), syntax (Chomsky, 1965)1, and mu-
sic (Lehrdahl and Jackendoff, 1996). This paper offers

1The approach we have described should be distinguished
from two usages of “generative” that are found in the linguis-
tics literature. Generativity sometimes refers to the infinite
use of finite means: for us, a generative process need not meet
this criterion, although many interesting processes will. The
second (and more central) usage refers to a grammar’s abil-
ity to generate the set of grammatical sentences: Chomsky
(1965) defines a generative grammar as “a system of rules
that in some explicit and well-defined way assigns structural
descriptions to sentences.” A system of this sort need not
be generative in our sense — in particular, it need not as-

a generative theory of similarity, a notion often invoked
by models of high-level cognition. We argue that two
objects are similar to the extent that they seem to have
been generated by the same underlying process.

The literature on similarity covers settings that ex-
tend from the comparison of simple stimuli like tones and
colored patches to the comparison of highly-structured
objects like narratives. The generative approach is rele-
vant to the entire spectrum of applications, but we are
particularly interested in high-level similarity. In par-
ticular, we are interested in how similarity judgments
draw on intuitive theories, or systems of rich conceptual
knowledge (Murphy and Medin, 1985). Intuitive theories
and generative processes are intimately linked: Murphy
(1993), for example, defines a theory as “a set of causal
relations that collectively generate or explain the phe-
nomena in a domain.” Our generative framework should
therefore help to explain how similarity judgments are
guided by intuitive theories. Others have recognized the
importance of this issue: Murphy and Medin (1985) sug-
gest, for example, that “the notion of similarity must be
extended to include theoretical knowledge.”

We develop a formal theory of similarity and compare
it to two existing theories. The featural account (Tver-
sky, 1977) suggests that the similarity of two objects is
a function of their common and distinctive features, and
the transformation account suggests that similarity de-
pends on the number of operations required to transform
one object into the other (Hahn et al., 2003). We show
that versions of both approaches emerge as special cases
of our model, and present an experiment that directly
compares our model with the transformation account.

Generative processes and similarity

Before introducing our formal model, we describe several
cases where the assessment of similarity relies on infer-
ences about generative processes. Suppose we are shown

sume that structural descriptions have derivational histories.
Generative grammars, however, are typically expressed us-
ing formalisms that do assign derivational histories to struc-
tural descriptions, and theories that assume the psychological
reality of these histories are instances of the generative ap-
proach. Chomsky (1995) has rejected theories of this sort:
“the ordering of operations [in grammatical theory] is ab-
stract, expressing postulated properties of the language fac-
ulty of the brain, with no temporal interpretation implied.”
Others, however, argue for linguistic theories that are gener-
ative in our sense (Marantz, To appear)
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Figure 1: Three bugs. Given that the prototype has
been observed, which is more likely to exist — i or iii?

a prototype object and asked to predict what similar ob-
jects might exist in the world. There are two kinds of
predictions: small perturbations of the prototype, or ob-
jects produced by small perturbations of the process that
generated the prototype. The second strategy is likely to
be more successful than the first, since many perturba-
tions of the prototype will not arise from any plausible
generative process, and thus could never appear in prac-
tice. By definition, however, an object produced by a
small perturbation of an existing generative process will
have a plausible causal history.

To give a concrete example, suppose the prototype is a
bug generated by a biological process of growth (Figure
1ii). The bug in i is a small perturbation of the proto-
type, but has no plausible generative history. The bug
in iii does have a plausible generative history — it is
easy to imagine how a perturbation of the process that
produced ii could produce a bug with an extra segment.
If we hope to find a bug that is similar but not identical
to the prototype, we should look for iii rather than i.

A sceptic might argue that this prediction task can be
solved by taking the intersection of the set of objects sim-
ilar to the prototype and the set of objects that are likely
to exist. The two sets could be computed by indepen-
dent mental modules: the second set depends critically
on generative processes, but the first set (and therefore
the similarity module) need not. We think it more likely
that the notion of similarity is ultimately grounded in
the world, and that it evolved for the purpose of com-
paring real-world objects. If so, then knowledge about
what kinds of objects are likely to exist should be deeply
bound up with the notion of similarity.

This prediction task is of practical importance, but is
not the standard context in which similarity is discussed.
More commonly, subjects are shown a pair of objects and
asked to rate the similarity of the pair. Note that both
objects are observed to exist and the previous argument
does not apply. Yet generative processes are still im-
portant, since they help pick out the features critical for
the similarity comparison. Suppose, for instance, that a
forest-dweller discovers a nutritious mushroom. Which
is more similar to the mushroom: a mushroom identical
except for its size, or a mushroom identical except for
its color? Knowing how mushrooms are formed suggests
that size is not a key feature. Mushrooms grow from
small to large, and the final size of a plant depends on
factors like the amount of sunlight it received and the
fertility of the soil that it grew in. Reflections like these
suggest that the differently-sized mushroom should be
judged more similar.

A final reason why generative processes matter is that

they are deeply related to essentialism. Medin and
Ortony (1989) note that “surface features are frequently
constrained by, and sometimes generated by, the deeper,
more central parts of objects.” Even if we observe only
the surface features of two objects, it may make sense to
judge their similarity by comparing the deeper proper-
ties inferred to generate the surface features. Yet we can
say more: just as surface features are generated by the
essence of the object, the essence itself has a generative
history. Surface features are often reliable guides to the
essence of an object, but the object’s causal history is
a still more reliable indicator, if not a defining criterion
of its essence. Keil (1989) discusses the case of an ani-
mal that is born a skunk, then undergoes surgery that
leaves it looking exactly like a raccoon. Since the animal
is generated in the same way as a skunk (born of skunk
parents), we conclude that it remains a skunk, no matter
how it appears on the surface.

These examples suggest that the generative approach
may be broadly useful in explaining high-level similarity
judgments. Yet it is unlikely that the approach will be
able to account for all kinds of similarity judgments. We
claim only that there is an important class of judgments
that is better explained by the generative approach than
by previous approaches to similarity.

We now present a formal model that attempts to cap-
ture the intuitions behind the examples described thus
far. The rigor of a computational theory is bought at
a price, however, and we will only apply the theory to
examples much simpler than those already given.

A computational theory of similarity

Given a domain D, we develop a theory that specifies the
similarity between any two samples from D. A sample
from D will usually contain a single object, but work-
ing with similarities between sets of objects is useful for
some applications. We formalize a generative process as
a probability distribution over D that depends on pa-
rameter vector θ.

Suppose that s1 and s2 are samples from D. We con-
sider two hypotheses: H1 holds that s1 and s2 are in-
dependent samples from a single generative process, and
H2 holds that the samples are generated from two inde-
pendently chosen processes. Similarity is defined as the
log likelihood ratio (Good, 1984), which measures the
weight of evidence for H1 compared to H2:

sim(s1, s2) = log

[

P (s1, s2|H1)

P (s1, s2|H2)

]

= log

[
∫

P (s1|θ)P (s2|θ)p(θ)dθ
∫

P (s1|θ)p(θ)dθ
∫

P (s2|θ)p(θ)dθ

]

(1)

Equation 1 is not the only way to formalize the gen-
erative approach to similarity, and Jebara et al. (2004)
describe an alternative that is motivated by similar intu-
itions. Our model has a clearer probabilistic interpreta-
tion than theirs, but the two may well perform similarly
in practice.

For some applications, Equation 1 may be difficult to
calculate and we will approximate it by replacing the



integrals with likelihoods at the maximum a posteriori
(MAP) values of θ:

sim(s1, s2) = log

[

P (s1|θ12)P (s2|θ12)p(θ12)

P (s1|θ1)p(θ1)P (s2|θ2)p(θ2)

]

(2)

where θ12 = argmaxθP (s1, s2|θ), θ1 = argmaxθP (s1|θ),
and θ2 = argmaxθP (s2|θ).

Similarity is symmetric under this measure:
sim(s1, s2) = sim(s2, s1). Whether a symmetric
measure is suitable will depend on the context in subtle
ways. Consider, for example, the difference between the
questions ‘How similar are s1 and s2?’ and ‘How similar
is s1 to s2?’ If an asymmetric measure is required, the
similarity of s1 to s2 could be defined as the probability
that s1 is produced by the process that generated s2, or
that s2 is produced by the process that generated s1.
This paper, however, will focus on the symmetric case.

We now demonstrate our generative framework in ac-
tion by deriving a featural model and a transformational
model as special cases. 2 Understanding the formal rela-
tionships between these models is important for choosing
between them, an issue we will soon address.

Featural models

Suppose that objects are represented as binary feature
vectors, and let s1 and s2 be two objects, s1 ∪ s2 be the
set of features shared by both objects, and s1 − s2 and
s2 − s1 be the sets of features possessed by one object
but not the other. Tversky’s contrast model proposes
that

sim(s1, s2) = γ1F (s1 ∪ s2)− γ2F (s1 − s2)− γ3F (s2 − s1)

where γ1, γ2, and γ3 are positive constants and F (·)
measures the saliency of a feature set.

Let n be the number of features possessed by one or
both of the objects. To apply our generative framework,
let the domain D be the set of all n-place binary vectors.
A generative process over D is specified by a n-place
vector θ, where θi is the probability that an object has
value 1 on feature i. We place independent beta priors
on each θi:

θi ∼ Beta(α, β)

si ∼ Bernoulli(θi),

where si is the ith feature value for object s, α and β
are hyperparameters and Beta(·, ·) is the beta function.3

This generative process is known by statisticians as the
beta-Bernoulli model, and has previously appeared in
the psychological literature as part of Anderson’s ratio-
nal analysis of categorization (Anderson, 1991).

Using Equation 1, we can show that

sim(s1, s2) = k1|s1 ∪ s2| − k2|s1 − s2| − k2|s2 − s1|

2Spatial models also emerge as a special case: see the sup-
plementary information at www.mit.edu/~ckemp/ for details,
and for derivations of all results presented here.

3If we want to weight features differently, a different α
and β can be used for each feature.

where k1 = log
(

α+1

α

)

− log
(

α+β+1

α+β

)

, k2 = log
(

α+β+1

α+β

)

,

and F (X) = |X| is the cardinality of X.
Under a suitable choice of generative process, then,

our model becomes equivalent to a version of the con-
trast model where γ2 = γ3 and F (·) = | · |. Our rederiva-
tion of Tversky’s result makes at least two contributions.
First, it provides an interpretation of k1 and k2: these
parameters are functions of α and β, which make state-
ments about properties of the world. α

α+β
is the a priori

probability that an object has any given feature, and
α + β measures the confidence we should place in this
probability. In contrast, the parameters γ1, γ2 and γ3 in
Tversky’s model are free parameters with no real mean-
ing independent of the model. A second contribution is
that our approach automatically provides a setwise sim-
ilarity measure if s1 and s2 are sets of feature vectors
rather than single objects. Setwise measures are needed
by some psychological models (Osherson et al., 1990),
but cannot be derived from the contrast model without
additional assumptions.

Transformational models

The transformational approach holds that s1 is similar
to s2 if s1 can be readily transformed into s2. Suppose
we are given a set of objects D and a set of transfor-
mations T . We assume that every transformation is re-
versible — if there is a transformation mapping s1 into
s2, there must also be a transformation mapping s2 into
s1. A generative process over D is specified by a pro-
totype θ ∈ D chosen from a uniform (and possibly im-
proper) distribution over D. To generate an object s
from this process, we sample k from a geometric dis-
tribution, choose k transformations at random from T ,
then apply them to the prototype:

θ ∼ Uniform(D)

k ∼ Geometric(λ)

ti ∼ Uniform(T )

s = tk · tk−1 . . . · t1(θ)

where λ is a constant, and ti is the ith transformation
chosen. Intuitively, this process tends to generate small
variations of the chosen prototype θ, where the permis-
sible variations depend on the set of transformations.

We use Equation 2, and approximate each term in the
expression using MAP settings of k and t. The denom-
inator drops out, and the numerator is approximated
using

P (s1|θ12)P (s2|θ12)

≈ P (s1|θ12, k̂1, t̂1)P (s2|θ12, k̂2, t̂2)P (k̂1, k̂2, t̂1, t̂2)

= P (k̂1, k̂2, t̂1, t̂2)

where k̂1 is the number of transformations needed to
generate s1 from the prototype θ12, t̂1 is the set of these

transformations, and θ12, k̂1, k̂2, t̂1 and t̂2 are set to val-

ues that maximize P (θ12, k̂1, k̂2, t̂1, t̂2|s1, s2,H2). Since



there is a cost for each transformation (the geometric

distribution encourages k̂1 and k̂2 to be small), the MAP

settings for k̂1 and k̂2 minimize the sum k̂1 + k̂2. The

minimal value is achieved when k̂1 + k̂2 is the length of
the shortest path joining s1 and s2, and θ12 lies some-
where along this path. It is now straightforward to show

that sim(s1, s2) is inversely related to k̂1 + k̂2, or the
transformation distance between s1 and s2. We suspect
that a similar analysis can be given if we relax the as-
sumption that transformations are reversible, although
we leave the details for future work.

Choosing between models of similarity

We believe that the featural model, the transformational
model and our generative model offer precisely the same
expressive power. The featural model can capture an
arbitrary dataset perfectly if we have complete freedom
to choose the features, and so can the other models if we
have complete freedom to choose the transformations or
generative processes.4 It follows that all of the models
can mimic each other — given a particular choice of fea-
tures for the featural model, for example, there will be
transformations and generative processes that allow the
other models to make exactly the same predictions.

Even though the models have the same expressive
power, we can choose between them on grounds of ex-
planatory power. Whenever these models are applied,
advocates of each approach need to explain why they
chose the features, transformations, and generative pro-
cesses that they did, and these explanations are unlikely
to be equally convincing. Suppose, for example, that the
features needed by the featural model seem rather com-
plicated, and share only one property: all of them are
signatures of an underlying generative process. Keil’s
skunk example (Keil, 1989) is one case where this seems
to be true, and where the generative approach should
probably come out on top. We expect there to be other
cases where the featural model is judged superior, and
others still where the transformational approach gives
the most natural account of the data.

It may be possible to characterize the settings where
each of the three models is likely to prove the model
of choice. We do not attempt that here, but suggest
only that the generative approach is uniquely well-suited
to explaining high-level similarity judgments. High-level
judgments are likely to rely on intuitive theories, and
intuitive theories often specify exactly the kind of infor-
mation needed by the generative approach: information
about the causal histories of objects.

We also believe that there are low-level applications
where the generative approach is more explanatory than
the other approaches. To support this point and to com-
pare our approach to a published model, we designed an
experiment using colored strings as stimuli.

4The model specified by Equation 1 can only capture sym-
metric similarity measures, but as mentioned earlier, there
are versions of the generative approach that are not subject
to this limitation.

Experiment

Models: We compared the transformational approach
to the generative approach in the domain of colored
strings. An advantage of choosing this domain is that
there are instances of the competing approaches that
seem natural but make different predictions. Two indi-
cations that the models are natural are that both draw
on previously published work, and that neither was de-
veloped specifically for this comparison.

The transformation model for binary strings uses
the five transformations proposed by Imai (1977) and
adopted by Hahn et al. (2003): insertion, deletion, phase
shift (shifting all squares one position to the right or left),
mirror-imaging (reflection about the central axis), and
reversal (the transformation that maps white squares
into black squares and vice versa). We extend these
transformations to ternary strings in the natural manner.
All of the transformations are weighted equally, and the
dissimilarity between two strings is defined as the num-
ber of transformations required to transform one into the
other.

We implement the generative approach using Hidden
Markov Models (HMMs), a class of generative processes
that is standard in fields including computational biology
and computational linguistics. A HMM is determined by
a set of internal states, a matrix of transition probabili-
ties q that specifies how to move between the states, and
a matrix of observation probabilities o that specifies how
to generate symbols from each state. To generate a se-
quence from a HMM, we choose an initial state from a
distribution π, probabilistically generate a color using o,
then probabilistically choose the next state using q. We
continue until some stopping criterion has been satisfied.

A HMM can be represented using a vector θ =
{π, o, q}. Any given θ induces a probability distribution
over the set of all strings, and we can therefore apply the
formal model developed above. For simplicity, we use
uniform priors on each component of θ and follow the
MAP approach in Equation 2. MAP values of θ were
computed using the EM algorithm (Murphy, 1998).

Task: We used a forced-choice triad task. Subjects
were shown a prototype string, and asked to decide
which of two strings was most similar to the prototype.
One of these strings was the ‘HMM string,’ the string
most similar to the prototype according to the genera-
tive model. The other was the ‘transformation string,’
the string most similar to the prototype according to
the transformational model. Each subject assessed 20
binary triads then 16 ternary triads. Five binary triads
are shown in Figure 2, and the full set is available from
www.mit.edu/~ckemp/.

The triads were chosen systematically to cover most
kinds of strings that can be represented using HMMs
with a handful of states. We generated a comprehen-
sive set of HMM types, then designed a few triads for
each type. A HMM type includes an architecture (a
graph with arrows indicating probable transitions be-
tween states) and a purity parameter for each state. A
pure state generates only one color, but a noisy state
generates multiple colors. Figure 2 shows several of the
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Figure 2: Five binary triads used in the experiment. For each triad, at least 9 of 12 subjects chose the HMM
string. The prototype and HMM strings are consistent with the HMM types shown on the right. Arrows indicate
high-probability transitions, and the darkness of a state shows its probability of generating the color black.

HMM types used to generate binary strings. The HMM
type in 2e moves between a state that generates white
squares and another that generates black squares, and
tends to generate several squares from each state.

Given a HMM type, we chose a prototype string and a
HMM string consistent with the type. The HMM string
was usually, but not always the same length as the pro-
totype string. The transformation string was created by
transforming the prototype string at a few key points.
Two or three transformations were used to create most
of the binary transformation strings. The ternary strings
are longer, and between three and five transformations
were used in most cases.

Results: Table 1 shows results for 12 subjects. There
were 240 judgments overall for the binary strings (20 for
each subject), and 73% of these judgments favored the
generative model. For 17 out of the 20 triads, a ma-
jority of subjects chose the generative string, and no no
triad clearly favored the transformation model (7 out of
12 subjects chose the transformation string on the most
successful triad for this model). The general pattern
of results was similar for the ternary strings, but this
time a handful of triads clearly favored the transforma-
tion model. Overall, these results suggest that similarity
judgments between sequences are sensitive to regularities
that can be expressed using HMMs.

A possible response is that all of the prototype strings
were consistent with simple HMMs, and it is not surpris-
ing that a model based on HMMs should perform better
than an alternative model. It is true that our sample of
strings was biased towards strings generated by simple
processes, and is therefore unrepresentative of the set
of all possible strings. We suggest, however, that sam-
ples from real-world domains are biased in precisely the
same way — indeed, that is one of the motivations for
our approach. Consider the set of all possible animals,
which includes creatures like the manticore, a beast with
a man’s face, a lion’s body and a scorpion’s tail. We can
imagine animals that are much more bizarre than the
manticore, but any sample of real-world animals will be
biased towards animals generated by a relatively simple
process — descent with modification.

Data Judgments Triads

Binary triads 73 85
Ternary triads 63 69
All triads 69 78

Table 1: Percentages of judgments and of triads that
favored the generative model. A triad favored the gen-
erative model if more than half of the subjects chose the
HMM string.

Discussion

Our results suggest some conclusions about the gener-
ative and transformational approaches that apply well
beyond the domain of strings. A major problem with the
transformational account is that it does not distinguish
between generic and non-generic configurations (Jepson
and Richards, 1993). Consider the strings in Figure 2a.
The transformation string is only two transformations
away from the prototype string, but the transformation
string is non-generic : since the dark squares appear in a
clump, it has a Gestalt property that is not shared by the
prototype string. Figure 3a shows another example. The
difference between a.i and a.ii is that all the dots have
been shifted by a small amount, but a.i is non-generic —
it has a striking property that is missing from a.ii.

The generative approach deals neatly with generic and
non-generic configurations. The configuration in a.i is
most likely to have been generated by a process that pro-
duces dots arrayed along a line, and this process has no
chance of producing a.ii. The configuration in a.ii is most
likely to have been generated by a process that produces
a line-shaped cloud of dots, and generating a stimulus
like a.i would be an astonishing coincidence under such
a process. It follows that a.i and a.ii are unlikely to have
been generated by the same process, even though a very
small transformation will convert one into the other.

Another way to state the problem is that simple trans-
formations will not suffice for the transformational ap-
proach. Consider the stimuli in Figure 3b. Removing
an edge between a pair of nodes must be an acceptable
transformation, since b.ii is very similar to b.iii, which is
identical except for a missing edge. Yet the remove edge
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Figure 3: Each central object is a small perturbation
of the object on the left, but seems more similar to the
object on the right.

transformation must be highly context-sensitive: since
b.ii is more similar to b.iii than b.i, it must be more ex-
pensive to convert b.ii into b.i. This example suggests
that each transformation must be assigned a cost that
depends on global properties of the stimulus.

Colored strings are relatively unstructured objects,
but we can handle more complex domains using pro-
cesses that generate structured objects. Kemp et al.
(2004), for example, describe a process that generates
systems of relations. Analogies form one special family of
comparisons between relational systems, and we believe
that the generative approach offers a view of analogy
that is is intriguingly different from previous approaches.
Existing models generally assume that systems are anal-
ogous to the extent that there is a structure-preserving
one-to-one map between their elements (Gentner, 1983).
The generative approach, however, allows analogous sys-
tems to have very different numbers of elements, as long
as they appear to have been produced by the same pro-
cess. Consider, for instance, the graphs in Figure 3c.
Even though there is a better structure-preserving map
between c.ii and c.i, c.ii seems more analogous to c.iii.
This is only one suggestive example, but we believe that
the generative approach to analogy deserves further in-
vestigation.

We have argued that similarity judgments are infer-
ences about generative processes, and suggested how this
idea applies to domains ranging from the simple (fea-
ture vectors) to the complex (graphs and other struc-
tured objects). The generative processes formalized here
have been simpler than the processes that appear in peo-
ple’s intuitive theories, but we are optimistic that our
framework will help explain how similarity judgments
are guided by sophisticated theoretical knowledge.
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