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Abstract

Much of human knowledge is organized into sophisticated systems that are often
called intuitive theories. We propose that intuitive theories are mentally repre-
sented in a logical language, and that the subjective complexity of a theory is
determined by the length of its representation in this language. This complexity
measure helps to explain how theories are learned from relational data, and how
they support inductive inferences about unobserved relations. We describe two
experiments that test our approach, and show that it provides a better account of
human learning and reasoning than an approach developed by Goodman [1].

What is a theory, and what makes one theory better than another? Questions like these are of obvious
interest to philosophers of science but are also discussed by psychologists, who have argued that
everyday knowledge is organized into rich and complex systems that are similar in many respects
to scientific theories. Even young children, for instance, have systematic beliefs about domains
including folk physics, folk biology, and folk psychology [2]. Intuitive theories like these play many
of the same roles as scientific theories: in particular, both kinds of theories are used to explain and
encode observations of the world, and to predict future observations.

This paper explores the nature, use and acquisition of simple theories. Consider, for instance, an
anthropologist who has just begun to study the social structure of a remote tribe, and observes that
certain words are used to indicate relationships between selected pairs of individuals. Suppose that
term T1(·, ·) can be glossed as ancestor(·, ·), and that T2(·, ·) can be glossed as friend(·, ·). The
anthropologist might discover that the first term is transitive, and that the second term is symmetric
with a few exceptions. Suppose that term T3(·, ·) can be glossed as defers to(·, ·), and that the tribe
divides into two castes such that members of the second caste defer to members of the first caste. In
this case the anthropologist might discover two latent concepts (caste 1(·) and caste 2(·)) along
with the relationship between these concepts.

As these examples suggest, a theory can be defined as a system of laws and concepts that specify
the relationships between the elements in some domain [2]. We will consider how these theories are
learned, how they are used to encode relational data, and how they support predictions about unob-
served relations. Our approach to all three problems relies on the notion of subjective complexity.
We propose that theory learners prefer simple theories, that people remember relational data in terms
of the simplest underlying theory, and that people extend a partially observed data set according to
the simplest theory that is consistent with their observations. There is no guarantee that a single
measure of subjective complexity can do all of the work that we require [3]. This paper, however,
explores the strong hypothesis that a single measure will suffice.

Our formal treatment of subjective complexity begins with the question of how theories are mentally
represented. We suggest that theories are represented in some logical language, and propose a spe-
cific first-order language that serves as a hypothesis about the “language of thought.” We then pursue
the idea that the subjective complexity of a theory corresponds to the length of its representation in
this language. Our approach therefore builds on the work of Feldman [4], and is related to other
psychological applications of the notion of Kolmogorov complexity [5]. The complexity measure
we describe can be used to define a probability distribution over a space of theories, and we develop
a model of theory acquisition by using this distribution as the prior for a Bayesian learner. We also
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Figure 1: Six possible extensions for a binary predicate R(·, ·). In each case, the objects in the
domain are represented as digits, and a pair such as 16 indicates that R(1, 6) is true. Below each set
of pairs, the simplest theory according to our complexity measure is shown.

show how the same Bayesian approach helps to explain how theories support inductive generaliza-
tion: given a set of observations, future observations (e.g. whether one individual defers to another)
can be predicted using the posterior distribution over the space of theories.

We test our approach by developing two experiments where people learn and make predictions
about binary and ternary relations. As far as we know, the approach of Goodman [1] is the only
other measure of theory complexity that has previously been tested as a psychological model [6].
We show that our experiments support our approach and raise challenges for this alternative model.

1 Theory complexity: a representation length approach

Intuitive theories correspond to mental representations of some sort, and our first task is to char-
acterize the elements used to build these representations. We explore the idea that a theory is a
system of statements in a logical language, and six examples are shown in Fig. 1. The theory in
Fig. 1b is related to the defers to(·, ·) example already described. Here we are interested in a
domain including 9 elements, and a two place predicate R(·, ·) that is true of all and only the 15
pairs shown. R is defined using a unary predicate T which is true of only three elements: 6, 7, and
8. The theory includes a clause which states that R(X, Y) is true for all pairs XY such that T(X) is
false and T(Y) is true. The theory in Fig. 1c is very similar, but includes an additional clause which
specifies that R(1, 1) is true, and an exception which specifies that R(1, 6) is false. Formally, each
theory we consider is a collection of function-free definite clauses. All variables are universally
quantified: for instance, the clause R(X, Z)← R(X, Y), R(Y, Z) is equivalent to the logical formula
∀x∀y∀z (R(x, z)← R(x, y) ∧ R(y, z)). For readability, the theories in Fig. 1 include parenthe-
ses and arrows, but note that these symbols are unnecessary and can be removed. Our proposed
language includes only predicate symbols, variable symbols, constant symbols, and a period that
indicates when one clause finishes and another begins.

Each theory in Fig. 1 specifies the extension of one or more predicates. The extension of predicate
P is defined in terms of predicate P+ (which captures the basic rules that lead to membership in P)
and predicate P− (which captures exceptions to these rules). The resulting extension of P is defined
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as P+ \ P−, or the set difference of P+ and P−.1 Once P has been defined, later clauses in the
theory may refer to P or its negation P̄. To ensure that our semantics is well-defined, the predicates
in any valid theory must permit an ordering so that the definition of any predicate does not refer to
predicates that follow it in the order. Formally, the definition of each predicate P+ or P− can refer
only to itself (recursive definitions are allowed) and to any predicate M or M̄ where M < P.

Once we have committed to a specific language, the subjective complexity of a theory is assumed to
correspond to the number of symbols in its representation. We have chosen a language where there
is one symbol for each position in a theory where a predicate, variable or constant appears, and one
symbol to indicate when each clause ends. Given this language, the subjective complexity c(T ) of
theory T is equal to the sum of the number of clauses in the theory and the number of positions in
the theory where a predicate, variable or constant appears:

c(T ) = #clauses(T ) + #pred slots(T ) + #var slots(T ) + #const slots(T ). (1)

For instance, the clause R(X, Z)← R(X, Y), R(Y, Z). contributes ten symbols towards the complexity
of a theory (three predicate symbols, six variable symbols, and one period). Other languages might
be considered: for instance, we could use a language which uses five symbols (e.g. five bits) to
represent each predicate, variable and constant, and one symbol (e.g. one bit) to indicate the end of
a clause. Our approach to subjective complexity depends critically on the representation language,
but once a language has been chosen the complexity measure is uniquely specified.

Although our approach is closely related to the notion of Kolmogorov complexity and to Minimum
Message Length (MML) and Minimum Description Length (MDL) approaches, we refer to it as a
Representation Length (RL) approach. A RL approach includes a commitment to a specific language
that is proposed as a psychological hypothesis, but these other approaches aspire towards results that
do not depend on the language chosen.2 It is sometimes suggested that the notion of Kolmogorov
complexity provides a more suitable framework for psychological research than the RL approach,
precisely because it allows for results that do not depend on a specific description language [8]. We
subscribe to the opposite view. Mental representations presumably rely on some particular language,
and identifying this language is a central challenge for psychological research.

The language we described should be considered as a tentative approximation of the language of
thought. Other languages can and should be explored, but our language has several appealing prop-
erties. Feldman [4] has argued that definite clauses are psychologically natural, and working with
these representations allows our approach to account for several classic results from the concept
learning literature. For instance, our language leads to the prediction that conjunctive concepts are
easier to learn than disjunctive concepts [9].3 Working with definite clauses also ensures that each of
our theories has a unique minimal model, which means that the extension of a theory can be defined
in a particularly simple way. Finally, human learners deal gracefully with noise and exceptions, and
our language provides a simple way to handle exceptions.

Any concrete proposal about the language of thought should make predictions about memory, learn-
ing and reasoning. Suppose that data set D lists the extensions of one or more predicates, and that a
theory is a “candidate theory” for D if it correctly defines the extensions of all predicates in D. Note
that a candidate theory may well include latent predicates—predicates that do not appear in D, but
are useful for defining the predicates that have been observed. We will assume that humans encode
D in terms of the simplest candidate theory for D, and that the difficulty of memorizing D is deter-
mined by the subjective complexity of this theory. Our approach can and should be tested against
classic results from the memory literature. Unlike some other approaches to complexity [10], for
instance, our model predicts that a sequence of k items is about equally easy to remember regardless
of whether the items are drawn from a set of size 2, a set of size 10, or a set of size 1000 [11].

1The extension of P+ is the smallest set that satisfies all of the clauses that define P+, and the extension of
P
− is defined similarly. To simplify our notation, Fig. 1 uses P to refer to both P and P

+, and P̄ to refer to P̄ and
P
−. Any instance of P that appears in a clause defining P is really an instance of P+, and any instance of P̄ that

appears in a clause defining P̄ is really an instance of P−.
2MDL approaches also commit to a specific language, but this language is often intended to be as general

as possible. See, for instance, the discussion of universal codes in Grünwald et al. [7].
3A conjunctive concept C(·) can be defined using a single clause: C(X)← A(X), B(X). The shortest definition

of a disjunctive concept requires two clauses: D(X)← A(X). D(X)← B(X).
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To develop a model of inductive learning and reasoning, we take a Bayesian approach, and use
our complexity measure to define a prior distribution over a hypothesis space of theories: P (T ) ∝
2−c(T ).4 Given this prior distribution, we can use Bayesian inference to make predictions about
unobserved relations and to discover the theory T that best accounts for the observations in data set
D [12, 13]. Suppose that we have a likelihood function P (D|T ) which specifies how the examples
in D were generated from some underlying theory T . The best explanation for the data D is the
theory that maximizes the posterior distribution P (T |D) ∝ P (D|T )P (T ). If we need to predict
whether ground term g is likely to be true, 5 we can sum over the space of theories:

P (g|D) =
∑

T

P (g|T )P (T |D) =
1

P (D)

∑

T :g∈T

P (D|T )P (T ) (2)

where the final sum is over all theories T that make ground term g true.

1.1 Related work

The theories we consider are closely related to logic programs, and methods for Inductive Logic
Programming (ILP) explore how these programs can be learned from examples [14]. ILP algorithms
are often inspired by the idea of searching for the shortest theory that accounts for the available data,
and ILP is occasionally cast as the problem of minimizing an explicit MDL criterion [10]. Although
ILP algorithms are rarely considered as cognitive models, the RL approach has a long psychological
history, and is proposed by Chomsky [15] and Leeuwenberg [16] among others.

Formal measures of complexity have been developed in many fields [17], and there is at least one
other psychological account of theory complexity. Goodman [1] developed a complexity measure
that was originally a philosophical proposal about scientific theories, but was later tested as a model
of subjective complexity [6]. A detailed description of this measure is not possible here, but we
attempt to give a flavor of the approach. Suppose that a basis is a set of predicates. The starting
point for Goodman’s model is the intuition that basis B1 is at least as complex as basis B2 if B1
can be used to define B2. Goodman argues that this intuition is flawed, but his model is founded
on a refinement of this intuition. For instance, since the binary predicate in Fig. 1b can be defined
in terms of two unary predicates, Goodman’s approach requires that the complexity of the binary
predicate is no more than the sum of the complexities of the two unary predicates.

We will use Goodman’s model as a baseline for evaluating our own approach, and a comparison
between these two models should be informed by both theoretical and empirical considerations.
On the theoretical side, our approach relies on a simple principle for deciding which structural
properties are relevant to the measurement of complexity: the relevant properties are those with
short logical representations. Goodman’s approach incorporates no such principle, and he proposes
somewhat arbitrarily that reflexivity and symmetry are among the relevant structural properties but
that transitivity is not. A second reason for preferring our model is that it makes contact with a
general principle—the idea that simplicity is related to representation length—that has found many
applications across psychology, machine learning, and philosophy.

2 Experimental results

We designed two experiments to explore settings where people learn, remember, and make inductive
inferences about relational data. Although theories often consist of systems of many interlocking
relations, we keep our experiments simple by asking subjects to learn and reason about a single
relation at a time. Despite this restriction, our experiments still make contact with several issues
raised by systems of relations. As the defers to(·, ·) example suggests, a single relation may be
best explained as the observable tip of a system involving several latent predicates (e.g. caste 1(·)
and caste 2(·)).

4To ensure that this distribution can be normalized, we assume that there is some upper bound on the number
of predicate symbols, variable symbols, and constants, and on the length of the theories we will consider. There
will therefore be a finite number of possible theories, and our prior will be a valid probability distribution.

5A ground term is a term such as R(8, 9) that does not include any variables.
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Figure 2: (a) Average time in seconds to learn the six sets in Fig. 1. (b) Average ratings of set com-
plexity. (c) Complexity scores according to our representation length (RL) model. (d) Complexity
scores according to Goodman’s model.

2.1 Experiment 1: memory and induction

In our first experiment, we studied the subjective complexity of six binary relations that display a
range of structural properties, including reflexivity, symmetry, and transitivity.

Materials and Methods. 18 adults participated in this experiment. Subjects were required to learn
the 6 sets shown in Fig. 1, and to make inductive inferences about each set. Although Fig. 1 shows
pairs of digits, the experiment used letter pairs, and the letters for each condition and the order
in which these conditions were presented were randomized across subjects. The pairs for each
condition were initially laid out randomly on screen, and subjects could drag them around and
organize them to help them understand the structure of the set. At any stage, subjects could enter a
test phase where they were asked to list the 15 pairs belonging to the current set. Subjects who made
an error on the test were returned to the learning phase. After 9 minutes had elapsed, subjects were
allowed to pass the test regardless of how many errors they made.

After passing the test, subjects were asked to rate the complexity of the set compared to other sets
with 15 pairs. Ratings were provided on a 7 point scale. Subjects were then asked to imagine that
a new letter (e.g. letter 9) had belonged to the current alphabet, and were given two inductive tasks.
First they were asked to enter between 1 and 10 novel pairs that they might have expected to see
(each novel pair was required to include the new letter). Next they were told about a novel pair that
belonged to the set (e.g. pair 91), and were again asked to enter up to 10 additional pairs that they
might have expected to see.

Results. The average time needed to learn each set is shown in Fig. 2a, and ratings of set complexity
are shown in Fig. 2b. It is encouraging that these measures yield converging results, but they may be
confounded since subjects rated the complexity of a set immediately after learning it. The complex-
ities plotted in Fig. 2c are the complexities of the theories shown in Fig. 1, which we believe to be
the simplest theories according to our complexity measure. The final plot in Fig. 2 shows complex-
ities according to Goodman’s model, which assigns each binary relation an integer between 0 and
4. There are several differences between these models: for instance, Goodman’s account incorrectly
predicts that the exception case is the hardest of the six, but our model acknowledges that a sim-
ple theory remains simple if a handful of exceptions are added. Goodman’s account also predicts
that transitivity is not an important structural regularity, but our model correctly predicts that the
transitive set is simpler than the same set with some of the pairs reversed (the random set).

Results for the inductive task are shown in Fig. 3. The first two columns show the number of subjects
who listed each novel pair. The remaining two columns show the probability of set membership
predicted by our model. To generate these predictions, we applied Equation 2 and summed over
a set of theories created by systematically extending the theories shown in Fig. 1. Each extended
theory includes up to one additional clause for each predicate in the base theory, and each additional
clause includes at most two predicate slots. For instance, each extended theory for the bipartite
case is created by choosing whether or not to add the clause T(9), and adding up to one clause for
predicate R.6 For the first inductive task, the likelihood term P (D|T ) (see Equation 2) is set to 0
for all theories that are not consistent with the pairs observed during training, and to a constant for
all remaining theories. For the second task we assumed in addition that the novel pair observed is

6
R(9, X), R̄(2, 9), and R(X, 9)← R(X, 2) are three possible additions.
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Figure 3: Data and model predictions for the induction task in Experiment 1. Columns 1 and 3
show predictions before any pairs involving the new letter are observed. Columns 2 and 4 show
predictions after a single novel pair (marked with a gray bar) is observed to belong to the set. The
model plots for each condition include correlations with the human data.

sampled at random from all pairs involving the new letter.7 All model predictions were computed
using Mace4 [18] to generate the extension of each theory considered.

The supporting material includes predictions for a model based on the Goodman complexity measure
and an exemplar model which assumes that the new letter will be just like one of the old letters.8 The
exemplar model outperforms our model in the random condition, and makes accurate predictions
about three other conditions. Overall, however, our model performs better than the two baselines.
Here we focus on two important predictions that are not well handled by the exemplar model. In
the symmetry condition, almost all subjects predict that 78 belongs to the set after learning that 87
belongs to the set, suggesting that they have learned an abstract rule. In the transitive condition,
most subjects predict that pairs 72 through 76 belong to the set after learning that 71 belongs to the
set. Our model accounts for this result, but the exemplar model has no basis for making predictions
about letter 7, since this letter is now known to be unlike any of the others.

2.2 Experiment 2: learning from positive examples

During the learning phase of our first experiment, subjects learned a theory based on positive ex-
amples (the theory included all pairs they had seen) and negative examples (the theory ruled out all
pairs they had not seen). Often, however, humans learn theories based on positive examples alone.
Suppose, for instance, that our anthropologist has spent only a few hours with a new tribe. She may
have observed several pairs who are obviously friends, but should realize that many other pairs of
friends have not yet interacted in her presence.

7For the second task, P (D|T ) is set to 0 for theories that are inconsistent with the training pairs and theories
which do not include the observed novel pair. For all remaining theories, P (D|T ) is set to 1

n
, where n is the

total number of novel pairs that are consistent with T .
8Supporting material is available at www.charleskemp.com
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Figure 4: Data and model predictions for Experiment 2. The four triples observed for each set are
shown at the top of the figure. The first row of plots shows average ratings on a scale from 1 (very
unlikely to belong to the set) to 7 (very likely). Model predictions are plotted as log probabilities.

Our framework can handle cases like these if we assume that the data D in Equation 2 are sampled
from the ground terms that are true according to the underlying theory. We follow [10] and [13]
and use a distribution P (D|T ) which assumes that the examples in D are randomly sampled with
replacement from the ground terms that are true. This sampling assumption encourages our model
to identify the theory with the smallest extension that is compatible with all of the training examples.
We tested this approach by designing an experiment where learners were given sets of examples that
were compatible with several underlying theories.

Materials and Methods. 15 adults participated in this experiment immediately after taking Experi-
ment 1. In each of five conditions, subjects were told about a set of triples built from an alphabet of
9 letters. They were shown four triples that belonged to the set (Fig. 4), and told that the set might
include triples that they had not seen. Subjects then gave ratings on a seven point scale to indicate
whether five additional triples (see Fig. 4) were likely to belong to the set.

Results. Average ratings and model predictions are shown in Fig. 4. Model predictions for each
condition were computed using Equation 2 and summing over a space of theories that included the
five theories shown at the top of Fig. 4, variants of these five theories which stated that certain pairs
of slots could not be occupied by the same constant,9 and theories that included no variables but
merely enumerated up to 5 triples.10

Although there are general theories like R(X, Y, Z) that are compatible with the triples observed in all
five conditions, Fig. 4 shows that people were sensitive to different regularities in each case.11 We
focus on one condition (Fig. 4b) that exposes the strengths and weaknesses of our model. According
to our model, the two most probable theories given the triples for this condition are R(X, X, 1) and the
closely related variant that rules out R(1, 1, 1). The next most probable theory is R(X, X, Y). These
predictions are consistent with people’s judgments that 771 is very likely to belong to the set, and
that 778 is the next most likely option. Unlike our model, however, people consider 777 to be
substantially less likely than 778 to belong to the set. This result may suggest that the variant of
R(X, X, Y) that rules out R(X, X, X) deserves a higher prior probability than our model recognizes. To
better account for cases like this, it may be worth considering languages where any two variables
that belong to the same clause but have different names must refer to different entities.

3 Discussion and Conclusion

There are many psychological models of concept learning [4, 12, 13], but few that use representa-
tions rich enough to capture the content of intuitive theories. We suggested that intuitive theories
are mentally represented in a first-order logical language, and proposed a specific hypothesis about

9One such theory includes two clauses: R(X, X, Y). R̄(X, X, X).
10One such theory is the following list of clauses: R(2, 2, 1). R(3, 3, 1). R(4, 4, 1). R(5, 5, 1). R(7, 7, 7).
11Similar results have been found with 9-month old infants. Cases like Figs. 4b and 4c have been tested in an

infant language-learning study where the stimuli were three-syllable strings [19]. 9-month old infants exposed
to strings like the four in Fig. 4c generalized to other strings consistent with the theory R(X, X, Y), but infants in
the condition corresponding to Fig. 4b generalized only to strings consistent with the theory R(X, X, 1).
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this “language of thought.” We assumed that the subjective complexity of a theory depends on the
length of its representation in this language, and described experiments which suggest that the result-
ing complexity measure helps to explain how theories are learned and used for inductive inference.

Our experiments deliberately used stimuli that minimize the influence of prior knowledge. Theories,
however, are cumulative, and the theory that seems simplest to a learner will often depend on her
background knowledge. Our approach provides a natural place for background knowledge to be
inserted. A learner can be supplied with a stock of background predicates, and the shortest repre-
sentation for a data set will depend on which background predicates are available. Since different
sets of predicates will lead to different predictions about subjective complexity, empirical results can
help to determine the background knowledge that people bring to a given class of problems.

Future work should aim to refine the representation language and complexity measure we proposed.
We expect that something like our approach will be suitable for modeling a broad class of intuitive
theories, but the specific framework presented here can almost certainly be improved. Future work
should also consider different strategies for searching the space of theories. Some of the strate-
gies developed in the ILP literature should be relevant [14], but a detailed investigation of search
algorithms seems premature until our approach has held up to additional empirical tests. It is com-
paratively easy to establish whether the theories that are simple according to our approach are also
considered simple by people, and our experiments have made a start in this direction. It is much
harder to establish that our approach captures most of the theories that are subjectively simple, and
more exhaustive experiments are needed before this conclusion can be drawn.

Boolean concept learning has been studied for more than fifty years [4, 9], and many psychologists
have made empirical and theoretical contributions to this field. An even greater effort will be needed
to crack the problem of theory learning, since the space of intuitive theories is much richer than
the space of Boolean concepts. The difficulty of this problem should not be underestimated, but
computational approaches can contribute part of the solution.
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