Radial diffusivity predicts demyelination in ex vivo multiple sclerosis spinal cords

Eric C. Klawiter a,⁎, Robert E. Schmidt b, Kathryn Trinkaus c, Hsiao-Fang Liang d, Matthew D. Budde d, Robert T. Naismith a, Sheng-Kwei Song d, Anne H. Cross a, Tammie L. Benzinger d

a Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8111, Saint Louis, MO 63110, USA
b Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8118, St. Louis, MO 63110, USA
c Division of Biostatistics, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8067, St. Louis, MO 63110, USA
d Department of Radiology, Biomedical MR Laboratory, Washington University School of Medicine, Campus Box 8227, 660 South Euclid Avenue, St. Louis, MO 63110, USA

⁎ Corresponding author. Massachusetts General Hospital, 15 Parkman Street, WAC c1631, Boston, MA 02114, USA. Fax: +1 617 726 6991.
E-mail address: eklawiter@partners.org (E.C. Klawiter).

Objective: Correlation of diffusion tensor imaging (DTI) with histochemical staining for demyelination and axonal damage in multiple sclerosis (MS) ex vivo human cervical spinal cords.

Background: In MS, demyelination, axonal degeneration, and inflammation contribute to disease pathogenesis to variable degrees. Based upon in vivo animal studies with acute injury and histopathologic correlation, we hypothesized that DTI can differentiate between axonal and myelin pathologies within humans.

Methods: DTI was performed at 4.7 T on 9 MS and 5 normal control fixed cervical spinal cord blocks following autopsy. Sections were then stained for Luxol fast blue (LFB), Bielschowsky silver, and hematoxylin and eosin (H&E). Regions of interest (ROIs) were graded semi-quantitatively as normal myelination, mild (<50%) demyelination, or moderate–severe (>50%) demyelination. Corresponding axonal counts were manually determined on Bielschowsky silver. ROIs were mapped to co-registered DTI parameter slices. DTI parameters evaluated included standard quantitative assessments of apparent diffusion coefficient (ADC), relative anisotropy (RA), axial diffusivity and radial diffusivity. Statistical correlations were made between histochemical gradings and DTI parameters using linear mixed models.

Results: Within ROIs in MS subjects, increased radial diffusivity distinguished worsening severities of demyelination. Relative anisotropy was decreased in the setting of moderate–severe demyelination compared to normal areas and areas of mild demyelination. Radial diffusivity, ADC, and RA became increasingly altered within quartiles of worsening axonal counts. Axial diffusivity did not correlate with axonal density (p = 0.091).

Conclusions: Increased radial diffusivity can serve as a surrogate for demyelination. However, radial diffusivity was also altered with axon injury, suggesting that this measure is not pathologically specific within chronic human MS tissue. We propose that radial diffusivity can serve as a marker of overall tissue integrity within chronic MS lesions. This study provides pathologic foundation for on-going in vivo DTI studies in MS.

© 2011 Elsevier Inc. All rights reserved.
In addition, correlation of conventional spinal cord parameters with disability is weak at both 1.5 and 3.0 T MR field strengths (Nijeholt et al., 1998; Stankiewicz et al., 2009). While conventional MRI, including T2W, is relatively sensitive to spinal cord abnormalities, it lacks specificity to the underlying pathologic correlate. In addition, spinal cord axonal loss occurs largely independent of T2 changes (Bergers et al., 2002). Advanced imaging techniques to improve pathologic specificity and correlate with physical disability would be clinically valuable.

Diffusion tensor imaging (DTI) measures microscopic movement of water in tissues. Diffusion tensor imaging provides information on CNS tissue integrity and structure (Filippi et al., 2001). The directional diffusivity derived from DTI measurements describes microscopic water movement parallel to \(\lambda_|| \) (axial diffusivity) and perpendicular to \(\lambda_\perp \), radial diffusivity) axonal tracts. We have previously shown in mouse models of white matter injury that decreased \(\lambda_\perp \) is associated with acute axonal injury, and increased \(\lambda_\perp \) is associated with myelin injury (Budde et al., 2009; Song et al., 2002, 2003, 2005). Additionally, in a rat spinal cord model, DTI detects axonal damage distal to inflammatory lesions, perhaps secondary to Wallerian degeneration (DeBoy et al., 2007). In humans, \(\lambda_|| \) has been demonstrated to decrease with acute optic neuritis (Naismith et al., 2009). Also, \(\lambda_\perp \) increases with clinical disability and severe tissue injury (Naismith et al., 2010a, 2010c).

This study sought to determine the relationship between DTI parameters and histopathology in human ex vivo spinal cord in the setting of chronic MS. The spinal cord provides an excellent model to study directional diffusion because axons within white matter tracts run in parallel, without significant crossing. As in vivo spinal cord DTI studies are explored (Agosta et al., 2007; Benedetti et al., 2010; van Hecke et al., 2009), it is important to understand the pathologic correlate of DTI parameters. A validated histopathology correlation study is a necessary prerequisite to the interpretation of in vivo spinal cord DTI studies. Our hypothesis was that \(\lambda_|| \) would differentiate among degrees of demyelination, whereas \(\lambda_\perp \) would provide information about axonal damage.

Methods

Specimen preparation

Institutional standards were followed for the use of human subjects and tissue for this study. Cervical spinal cords were obtained following autopsy from 13 clinically definite MS subjects and eight normal control subjects. Four MS subjects and three controls were excluded due to T2* artifact on MRI. Cervical spinal cord blocks were fixed in 10% formalin in PBS at room temperature. Time from expiration to beginning fixation ranged from 4 to 16 h. Specimens remained in fixative for 7–10 days before being cut into blocks.

Magnetic resonance imaging

MRI was performed using an Oxford Instruments 200/330 magnet (4.7 T, 33-cm clear bore) equipped with a 15-cm inner diameter, actively shielded Oxford gradient coil (18 G/cm, 200-μs rise time). The magnet, gradient coil, and Techron gradient power supply were interfaced with a Varian UNITY-INOVA console controlled by a Sun Microsystems Ultra-60 Sparc workstation. A custom-made sample holder and a custom-made 8 mm solvent surface coil were used for transmission and reception.

A conventional multislice spin echo imaging sequence modified by adding the Stejskal–Tanner diffusion sensitizing gradient pair was employed for acquisition of the required series of diffusion weighted images. The diffusion weighted images were acquired with repetition period (TR) 3 s, spin echo time (TE) 43 ms, time between application of gradient pulses 25 ms, diffusion gradient on time 10 m, slice thickness 0.25 mm with 0.25 mm isotropic voxels. Diffusion sensitizing gradients were applied along six directions with b-values of 0 and 1.813 ms/μm² (Basser and Pierpaoli, 1998). After imaging processing and averaging, the diffusion tensor was diagonalized to derive directional diffusivity on a voxel-by-voxel basis. Diffusion tensor imaging parameter maps were calculated for apparent diffusion coefficient (ADC), relative anisotropy (RA), \(\lambda_|| \), and \(\lambda_\perp \) as previously described (Song et al., 2002). In addition, conventional T2W images were obtained at the same resolution.

ROI identification

A neuroradiologist (T.L.B.) blinded to pathologic and clinical data independently identified regions of interest (ROIs) within lesions from the T2W and DTI parameter maps. Additionally, standard ROIs were created for white matter tracts (WMTs) including the dorsal white matter, right and left lateral white matter, and right and left ventral WMTs (Fig. 1). These standard column ROIs were applied to all slices of control subjects to derive normal values for DTI parameters in human cervical spinal cords ex vivo.

Histological staining

Following DTI, the formalin fixed MS and control spinal cords were embedded in paraffin and cut on a sliding microtome at a thickness of 3 μm. Sections were stained with Luxol fast blue (LFB) for myelin quantification, Bielschowsky silver for axonal counts, and hematoxylin and eosin (H&E) for inflammatory infiltrates. Methods of grading myelin, counting axons and determining presence of inflammation were pre-determined by an experienced neuropathologist (R.E.S.). A single investigator (E.C.K.) blinded to MRI and clinical data independently identified ROIs from LFB stained sections using a Nikon 80i microscope (Nikon USA). Histologic white matter ROIs were identified and graded as: 1) normal myelination, 2) mild demyelination (>50% myelin staining preserved), or 3) moderate to severe demyelination (<50% myelin staining preserved) (Fig. 2) similar to previous grading systems (Bot et al., 2004b; Cook et al., 2004). An attempt to identify a group of regions characterized by severe demyelination (>90%) was made. However, the paucity of this observation in only a few samples precluded valid statistical analysis. Regions most representative of normal myelination in MS samples were selected to represent MRI-described normal-appearing white matter (NAWM). Myelin scoring was determined by one investigator (E.C.K.). A second investigator (T.L.B.) reviewed the myelin scores for each ROI and agreed with the initial grading of the first investigator.

Histologic white matter ROIs were identified and cut on a sliding microtome at a thickness of 3 μm. Sections were stained with Luxol fast blue (LFB) for myelin quantification, Bielschowsky silver for axonal counts, and hematoxylin and eosin (H&E) for inflammatory infiltrates. Methods of grading myelin, counting axons and determining presence of inflammation were pre-determined by an experienced neuropathologist (R.E.S.). A single investigator (E.C.K.) blinded to MRI and clinical data independently identified ROIs from LFB stained sections using a Nikon 80i microscope (Nikon USA). Histologic white matter ROIs were identified and graded as: 1) normal myelination, 2) mild demyelination (>50% myelin staining preserved), or 3) moderate to severe demyelination (<50% myelin staining preserved) (Fig. 2) similar to previous grading systems (Bot et al., 2004b; Cook et al., 2004). An attempt to identify a group of regions characterized by severe demyelination (>90%) was made. However, the paucity of this observation in only a few samples precluded valid statistical analysis. Regions most representative of normal myelination in MS samples were selected to represent MRI-described normal-appearing white matter (NAWM). Myelin scoring was determined by one investigator (E.C.K.). A second investigator (T.L.B.) reviewed the myelin scores for each ROI and agreed with the initial grading of the first investigator.

Histologic white matter ROIs were identified and graded as: 1) normal myelination, 2) mild demyelination (>50% myelin staining preserved), or 3) moderate to severe demyelination (<50% myelin staining preserved) (Fig. 2) similar to previous grading systems (Bot et al., 2004b; Cook et al., 2004). An attempt to identify a group of regions characterized by severe demyelination (>90%) was made. However, the paucity of this observation in only a few samples precluded valid statistical analysis. Regions most representative of normal myelination in MS samples were selected to represent MRI-described normal-appearing white matter (NAWM). Myelin scoring was determined by one investigator (E.C.K.). A second investigator (T.L.B.) reviewed the myelin scores for each ROI and agreed with the initial grading of the first investigator.
sections were analyzed to confirm normal myelination and axonal density.

Pathologic and DTI co-registration

All image processing procedures were written in Java and implemented as plug-ins in ImageJ (NIH). Inter-modality registration of the spinal cord MR images was performed using a manual, 2D registration. Corresponding landmarks were manually placed on the DTI parameter maps and each of the digital histological images. Landmarks included vessels, prominent white and gray matter boundaries, and points along the perimeter of the cord. The co-registration of histological images to MR images was performed using a modification of previously described methods (Budde et al., 2007, 2009). Histologic images were warped to the pixelated MR image using a thin-plate spline warp deformation grid (Bookstein, 1989). Regions of interest identified on histologic sections were mapped on co-registered DTI slices (Fig. 3). Similarly, ROIs identified by DTI parameters were mapped on co-registered histologic sections. Values for each DTI parameter were determined for each ROI.

Chart review

Autopsy reports and subject charts were reviewed following MRI and histology analysis to evaluate the subjects’ demographics, clinical course and cause of death.

Statistical analysis

Inter-rater (E.C.K. and R.T.N.) axonal count reliability was assessed by intraclass correlation coefficient (ICC). Diffusion tensor imaging parameters and axonal count distributions were assessed and transformed as appropriate to approximate a Gaussian distribution to permit linear modeling. Mixed modeling compared DTI parameter means between control and MS subjects while accounting for multiple observations within a sample. Regional differences in MS spinal cords were analyzed by one-way analysis of variance (ANOVA). Linear mixed modeling with appropriate covariance structures were used to model DTI parameters by myelin and axonal pathologies. Multiple group comparisons were corrected using the Bonferroni correction. The distribution of axonal count as a continuous variable did not permit linear modeling due to poor model fit. As a result, this variable was analyzed in quartiles for correlation with DTI parameters. Possible pathology interactions were also assessed. Analysis was carried out using Statistical Package for the Social Sciences version 16 (SPSS, Chicago, IL).

Fig. 2. Luxol fast blue myelin staining and scoring. An axial LFB staining of cervical spinal cord (panel D) exhibits variable degrees of demyelination in an MS subject. Panel A demonstrates relatively normal myelination. Panel B represents severe demyelination. Panel C represents mild demyelination.

Fig. 3. Co-registration of histology to MRI images. A. A Luxol fast blue stained histologic slice is labeled with three ROIs (1–3). B. The histology image is warped with co-registered pixels to axial and radial diffusivity parameter maps (panels C and D).
Results

Demographics

Mean age at expiration for MS subjects was 56.6 (± 15.0) years (Table 1). Average disease duration was 21.2 (± 15.1) years. All MS subjects had signs and symptoms referable to the spinal cord. Additionally, all MS subjects had significant physical disability prior to death. Cause of death in the majority of MS subjects was infectious. Mean age at expiration for control subjects was 47.8 (± 20.1) years.

Tract analysis

Mean $\lambda_\|$, λ_\perp, ADC and RA were derived from standard WMT ROIs as illustrated in Fig. 1. Twenty-five WMT ROIs from control subjects and 45 WMT ROIs from MS subjects, representing five standard WMT ROIs from a single slice in each subject, were averaged. Axial diffusivity, radial diffusivity and ADC were significantly higher for the MS WMT ROIs ($p < 0.001$, respectively). In contrast, mean RA for the MS WMTs was not significantly different from controls ($p = 0.54$) (Fig. 4). Among the MS subject ROIs, no differences for any of the DTI parameters were observed among the three WMT locations (dorsal, lateral, or ventral) by ANOVA ($\lambda_\|$, $p = 0.51$; λ_\perp, $p = 0.60$; ADC, $p = 0.47$; and RA, $p = 0.74$). Time to fixation did not correlate with any of the DTI parameters ($\lambda_\|$, $p = 0.96$; λ_\perp, $p = 0.31$; ADC, $p = 0.55$; and RA, $p = 0.25$). Mean WMT axonal density for control samples was 149 ± 52 axons per high power field. Mean WMT axonal density for MS samples was 75 ± 62 axons per high power field. Intraclass correlation coefficient of axonal determination was acceptable (ICC = 0.99).

ROI analysis

Regions of interest were independently identified using the DTI parameter maps and histology. Diffusion values for each set of ROIs were not significantly different for any of the mean parameter values ($\lambda_\|$, $p = 0.67$; λ_\perp, $p = 0.57$; ADC, $p = 0.98$; and RA, $p = 0.32$). As a result, comparison of DTI parameters to histologic markers was made as a combined group of ROIs derived from MRI and ROIs derived from histology.

Myelin analysis

Regions of interest were scored as control, normal myelination in MS spinal cords, mild demyelination or moderate to severe demyelination. Radial diffusivity increased as the degree of demyelination increased, and was the only parameter that differentiated among the three categories within MS spinal cords (Fig. 5). Also for λ_\perp, control ROIs were different from mild and moderate to severe MS regions, but not for areas of normal myelination in MS ($p = 0.112$, pair-wise comparison) (Table 2). In addition to λ_\perp, $\lambda_\|$, and ADC both increased with increased degree of demyelination ($p < 0.001$ each for linear trend). Relative anisotropy distinguished ROIs with moderate to severe demyelination from areas of normal myelin staining ($p < 0.001$).

Table 1

Demographics of MS subjects.

<table>
<thead>
<tr>
<th>Subject #</th>
<th>Age</th>
<th>Race</th>
<th>Gender</th>
<th>Disease duration</th>
<th>Signs and symptoms potentially referable to the spinal cord</th>
<th>Disability level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>48</td>
<td>AA</td>
<td>M</td>
<td>4</td>
<td>RLE weakness, spasticity</td>
<td>Walker</td>
</tr>
<tr>
<td>2</td>
<td>74</td>
<td>C</td>
<td>F</td>
<td>29</td>
<td>Tetraparesis</td>
<td>Wheelchair</td>
</tr>
<tr>
<td>3</td>
<td>59</td>
<td>C</td>
<td>M</td>
<td>14</td>
<td>Tetraparesis, diffuse paresthesias</td>
<td>Wheelchair</td>
</tr>
<tr>
<td>4</td>
<td>45</td>
<td>C</td>
<td>F</td>
<td>16</td>
<td>LLE weakness, BUE Numbness</td>
<td>N/A</td>
</tr>
<tr>
<td>5</td>
<td>45</td>
<td>C</td>
<td>F</td>
<td>17</td>
<td>Tetraplegia, incontinence</td>
<td>Wheelchair</td>
</tr>
<tr>
<td>6</td>
<td>88</td>
<td>C</td>
<td>M</td>
<td>57</td>
<td>Spastic tetraparesis, BUE numbness</td>
<td>Wheelchair</td>
</tr>
<tr>
<td>7</td>
<td>46</td>
<td>C</td>
<td>M</td>
<td>20</td>
<td>Tetraplegia, hyperreflexia</td>
<td>Wheelchair</td>
</tr>
<tr>
<td>8</td>
<td>54</td>
<td>C</td>
<td>F</td>
<td>22</td>
<td>Tetraparesis, Sensory level</td>
<td>Wheelchair</td>
</tr>
<tr>
<td>9</td>
<td>50</td>
<td>C</td>
<td>F</td>
<td>12</td>
<td>Spastic paraparesis</td>
<td>Wheelchair</td>
</tr>
<tr>
<td>Mean</td>
<td>56.6</td>
<td></td>
<td></td>
<td>21.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AA = African American; C = Caucasian; M = Male; F = Female; LLE = left lower extremity; BUE = bilateral upper extremities; RUE = right upper extremity; N/A = not available.

Fig. 4. DTI parameter means. Box plots of DTI parameters with boxes representing 25th–75th percentiles. Whiskers represent two standard deviations from the mean. Outliers are represented by circles and stars. Axial, radial, and mean diffusivity were each different between MS subjects and controls ($p < 0.001$ for each) but no difference was appreciated for RA ($p = 0.54$) (Fig. 4). Among the MS subject ROIs, no differences for any of the DTI parameters were observed among the three WMT locations (dorsal, lateral, or ventral) by ANOVA ($\lambda_\|$, $p = 0.51$; λ_\perp, $p = 0.60$; ADC, $p = 0.47$; and RA, $p = 0.74$). Time to fixation did not correlate with any of the DTI parameters ($\lambda_\|$, $p = 0.96$; λ_\perp, $p = 0.31$; ADC, $p = 0.55$; and RA, $p = 0.25$). Mean WMT axonal density for control samples was 149 ± 52 axons per high power field. Mean WMT axonal density for MS samples was 75 ± 62 axons per high power field. Intraclass correlation coefficient of axonal determination was acceptable (ICC = 0.99).

Fig. 5. Demyelination versus radial diffusivity. Radial diffusivity increases with increased degree of demyelination. Means are surrounded by 95% confidence intervals.
controls and ROIs representative of NAWM in MS samples (Table 2). Axonal and inflammation analyses

Axonal counts for each ROI were categorized into quartiles. Each DTI parameter was correlated with axonal density. Axial diffusivity did not predict axonal count density (p = 0.091) (Fig. 7). Increased \(\lambda_\parallel \), increased ADC and decreased RA predicted a linear trend for axonal loss (p < 0.001, p = 0.001, and p < 0.001, respectively). Only one of the nine MS subjects demonstrated inflammatory infiltrates on H&E staining.

Table 2

<table>
<thead>
<tr>
<th>DTI parameter</th>
<th>Control: normal MS</th>
<th>Control: mild</th>
<th>Control: moderate/severe</th>
<th>Normal MS: mild</th>
<th>Normal MS: moderate/severe</th>
<th>Mild: moderate/severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radial diffusivity</td>
<td>0.173, 0.220; p = 0.112</td>
<td>0.173, 0.257; p = 0.001</td>
<td>0.220, 0.257; p = 0.020</td>
<td>0.220, 0.338; p < 0.001</td>
<td>0.257, 0.338; p < 0.001</td>
<td>0.257, 0.338; p < 0.001</td>
</tr>
<tr>
<td>Axial diffusivity</td>
<td>0.467, 0.675; p = 0.004</td>
<td>0.467, 0.716; p < 0.001</td>
<td>0.467, 0.824; p < 0.001</td>
<td>0.675, 0.716; p < 0.001</td>
<td>0.578, 0.675, 0.824; p < 0.001</td>
<td>0.716, 0.824; p < 0.001</td>
</tr>
<tr>
<td>ADC</td>
<td>0.818, 1.159; p = 0.003</td>
<td>0.818, 1.253; p < 0.001</td>
<td>0.818, 1.552; p < 0.001</td>
<td>1.159, 1.253; p = 0.299</td>
<td>1.159, 1.552; p < 0.001</td>
<td>1.253, 1.552; p < 0.001</td>
</tr>
<tr>
<td>RA</td>
<td>0.553, 0.591; p = 1.000</td>
<td>0.553, 0.548; p = 0.972</td>
<td>0.591, 0.479; p < 0.001</td>
<td>0.524, 0.591, 0.479; p < 0.001</td>
<td>0.548, 0.479; p < 0.001</td>
<td></td>
</tr>
</tbody>
</table>

Four groups of ROIs were compared including control ROIs, regions of normal myelination in MS spinal cords, mild demyelination and moderate to severe demyelination. The estimated marginal means for each diffusion tensor imaging parameter were compared between groups in a pair-wise fashion. A Bonferroni correction for multiple comparisons was applied to each p-value. Number of ROIs in each myelination category are: control 25, normal MS = 53, mild = 82, moderate to severe = 63. Areas of normal myelination and mild demyelination were represented in all MS spinal cords. Moderate to severe regions were identified in 7 of 9 MS spinal cords.

Combined pathology analysis

MS samples were analyzed for both myelin and axonal pathologies. All ROIs from the three myelin categories were then dichotomized into high or low axonal counts based upon the mean count for the MS ROIs. Thus, six histological categories included: 1) normal myelination with high axon count, 2) normal myelination, low axon count, 3) mild demyelination, high axon count, 4) mild demyelination, low axon count, 5) moderate to severe demyelination, high axon count, and 6) moderate to severe demyelination, low axon count. For each parameter, the interaction term between myelin and axonal pathologies was not significant indicating that DTI parameter differences did not vary between axonal groups differentially based on the degree of demyelination. A trend for increased \(\lambda_\parallel \), with increased demyelination and axonal loss was further delineated (Fig. 8).

When both myelin and axonal count were simultaneously analyzed as predictors of DTI parameters, there was evidence that both types of pathology contributed independently to changes in radial diffusivity (myelin p < 0.001; axonal p < 0.001, linear trends), RA (myelin p < 0.003; axonal p = 0.001), and mean diffusivity (myelin p < 0.001; axonal p = 0.007). However, when modeling axial diffusivity, only demyelination (p < 0.001) was a significant predictor in the model, while axonal loss (p = 0.304) was not.

A direct comparison of axonal counts and level of demyelination revealed a linear relationship (p < 0.001) for decreased axonal counts with increased demyelination.
Discussion

This histopathology correlation study examined DTI in the cervical spinal cord of MS subjects ex vivo. The parallel orientation of fibers in the spinal cord white matter tracts allowed for evaluation of directional diffusivity in addition to summary parameters such as ADC and RA. A striking finding of this study was the sensitivity of λ_1 to demyelination, supporting our original hypothesis. Radial diffusivity predicted level of demyelination, even when controlling for axonal loss in the statistical model. This finding corroborates previously published histopathology correlation studies in animal models (Song et al., 2002, 2003, 2005). While level of demyelination was also a significant predictor of axial diffusivity, radial diffusivity better distinguished regions with milder demyelination from the most normal areas in MS spinal cords. However, in the setting of chronic lesions, where normal tissue architecture is more significantly altered, radial diffusivity loses specificity for demyelination. Both level of demyelination and axonal density contributed to alterations in radial diffusivity, perhaps attributable to the correlation of the two types of pathology in these specimens with advanced damage. However, its associations with both demyelination and axonal damage suggest that radial diffusivity can serve as a marker of overall tissue integrity within chronic MS lesions.

Contrary to our original hypotheses and previous animal studies, axial diffusivity did not discriminate among categories of axonal injury within MS subjects. Animal models with axonal damage have demonstrated decreased λ_1 in the acute setting, but DTI studies of animal models with long-standing disease have not yet been reported. A potential explanation for the lack of correlation is that following significant axonal drop-out, the diffusivity of the remaining axons is overshadowed by the increased diffusivity due to gliosis and increased extracellular space. λ_2 may undergo a dynamic change, decreasing in the acute axonal damage setting and eventually increasing to values much greater than normal. This is supported by in vivo data in acute versus chronic optic neuritis (Naismith et al., 2009). Naismith et al. demonstrated in optic neuritis that λ_2 was decreased in the acute setting but was increased compared to normal controls at 1 year in the same subjects. Therefore, the lack of correlation between axial diffusivity and axonal loss in the present study may reflect the timing of the DTI studies relative to lesion onset, and may not be inconsistent with its ability to detect acute axonal loss that has been appreciated in animal studies. There is additional evidence from this study that in the setting of chronic MS, where λ_1 and λ_2 may be increased in a similar proportion, anisotropy may remain relatively unchanged and therefore less informative. This is in contrast to other settings where a differential increase in λ_1 or decrease in λ_2 may result in decreased anisotropy.

While this study examines DTI in ex vivo MS spinal cord, past studies have examined DTI in ex vivo MS brain. Schmierer et al. (2007) examined DTI in postmortem brain samples and found that ADC and fractional anisotropy (FA) were primarily affected by myelin content and to a lesser extent axonal loss and gliosis. Directional diffusivities were not evaluated in their postmortem brain study. Additionally, fixation presents a potential confounder in DTI histopathology correlation studies. The effect of fixation on DTI was previously explored. In both animal and human postmortem studies pre- and post-fixation, fixed tissue decreases water diffusivity while leaving diffusion anisotropy largely preserved (Schmierer et al., 2008; Sun et al., 2003). Fixation in mouse brain led to a two- to three-fold decrease in mean diffusivity while λ_1 and λ_2 when normalized to mean diffusivity, remained unchanged (Sun et al., 2003). Relative anisotropy was also unchanged following fixation. In human brain, λ_1, λ_2, and mean diffusivity were decreased in unfixed ex vivo brain compared to in vivo conditions and dropped further following fixation while FA remained unchanged (Schmierer et al., 2007). In our study, time from expiration to beginning fixation did not correlate with any DTI parameter. However, the effect of fixation remains a potential confounding variable in ex vivo DTI studies.

This study adds to our understanding of the observation of diffuse changes in the brain and spinal cord in MS. When ROIs were selected in MS spinal cords that appeared normal or near normal by LFB staining (i.e. outside of distinct lesions), these areas still reflected diffusion parameters (λ_1, ADC and a trend for λ_2) that were increased compared to controls. This finding is in accord with other studies that have demonstrated abnormal DTI values in areas of NAWM or diffusely abnormal white matter (DAWM) (Seewann et al., 2009; Werring et al., 1999). These NAWM or DAWM areas in other studies are likely the equivalent of the ROIs in this study labeled the most histologically normal. This finding gives additional evidence for diffuse abnormalities in MS spinal cords following years of MS.

Recently, several in vivo DTI studies have been reported involving MS spinal cord, brain, and optic nerve. Benedetti et al. (2010) reported lower spinal cord FA in SPMS patients compared to benign MS patients. In another study in MS spinal cords without distinct lesions, spinal cord FA and the ratio λ_2/λ_1 demonstrated abnormalities compared to control spinal cords (van Hecke et al., 2009). Highly increased radial diffusivity has been associated with severe demyelination and axonal loss, correlating with the development of persistent T1 hypointensities or “black holes” in gadolinium enhancing brain lesions (Naismith et al., 2010b). Additionally, radial diffusivity has correlated strongly with visual outcomes in remote optic neuritis (Naismith et al., 2010). The importance of postmortem studies such as the present study is that they allow for direct correlation of pathology and imaging for validation of in vivo studies. Multiple sclerosis includes several types of pathology (demyelination, inflammation, axon loss, gliosis) that do not always exist concurrently. A complication in examining ex vivo spinal cords includes the complex interplay of these pathologies that can be present in concert or independently to some extent (Bitsch et al., 2000; DeLuca et al., 2006). In our study, demyelination and axonal loss correlated with one another, but differences in diffusion parameters at high and low axonal counts did not vary differentially based on the level of demyelination. Additionally, gliosis was appreciated in the majority of spinal cords samples but was not formally quantified. The resultant changes in structural architecture may partially account for decreased anisotropy in samples with both severe demyelination and axonal loss.

Another limitation of postmortem studies on the pathologic correlates of MRI is that samples are biased towards long-standing progressive disease. In this study, subjects had secondary progressive disease with chronic spinal cord lesions that largely lacked active inflammation. This provides an additional challenge to translating postmortem studies such as ours to in vivo conditions where inflammation is frequently present. Thus, no conclusions about the effect of inflammation on diffusion parameters can be drawn. Autopsy studies may also be biased toward severe lesions. Although spinal cord involvement may correlate with level of physical disability, the low variance in disability within the group of nine MS subjects in this study did not allow for correlation. Nonetheless, DTI still holds promise as a candidate imaging biomarker for disability correlation in vivo.

Conclusion

This study demonstrates sensitivity of λ_2 for the degree of demyelination in spinal cord lesions, but with less specificity than previous animal studies. In contrast, λ_1 did not correlate well with axonal loss. Diffusion tensor imaging also demonstrated diffuse changes within the normal-appearing spinal cord of MS patients ex vivo. This study provides a foundation for further exploration of DTI as a disease marker in MS.

Disclosures

The study is sponsored by grants from the National Institutes of Health (R01 NS054194) and the National MS Society (CA1012, RG...
References

Barnes, D., Munro, P.M., Youl, B.D., Prineas, J.W., McDonald, W.I., 1991. The longstanding MS report, or in the decision to submit the paper for publication.

