Long-term sequence training alters movement representations in sensorimotor network

Patrick Beukema1,2, Timothy Verstynen2,3

1Center for Neuroscience, University of Pittsburgh, 2Center for the Neural basis of Cognition, 3Carnegie Mellon University

Reprint: www.psy.cmu.edu/~coxlab/posters/Beukema_SFN16.pdf

Motivation

- Sequential skill acquisition is associated with binding distinct movements into one.

- It is unknown how sequential learning affects the representations of movements.

Methods

Dataset

- Participants: Neurologically healthy adults (n=18, age = 21.5±3.6 female)
- Finger movement sequence production task with fractal images
- 1300 task per movement (86,000 trials)

- Functional MRI data acquired pre and post-training
- Scan Parameters: 8 runs/session, TR=2000ms, MR 3.0, 64 slices, 2mm³

Representational Similarity Analysis

- Parallel task analysis (77% active)
- Pre-trained task analysis (94% active)

Decoding Within Motor Network

- Hand structure in sensorimotor cortex matches previous results.
- RDMs are highly correlated throughout motor control network.
- Training group shows increased RDM correlation in high level motor planning regions.
- Follow-up analyses will examine finger specific binding within motor control network.

References

Funding: Pennsylvania Department of Health's Commonwealth Universal Research Enhancement Program #5AP41006E2201
NSF Career: #1351748