The Effect of a Primary Sexual Reward Manipulation on Cortisol Responses to Psychosocial Stress in Men

J. David Creswell, PhD, Laura E. Pacilio, BS, Thomas F. Denson, PhD, and Maureen Satyshur, BS

Objective: Although previous research provides evidence for the role of rewarding activities in reducing hypothalamic-pituitary-adrenal axis responses to stress, no studies have tested whether rewards can buffer cortisol responses in humans undergoing social stressors. Method: This study experimentally investigated whether viewing appetitive rewarding pictures reduces cortisol responses to an acute stress challenge. Fifty-four heterosexual men were randomly assigned to view either mildly erotic (reward) or neutral images (control) of mixed-sex couples before completing the Trier Social Stress Test (TSST). Results: Participants in the reward condition had significantly lower area-under-the-curve cortisol reactivity to the TSST (mean [M] = 363.46) in comparison with participants in the control group (M = 807.06; F[1,46] = 4.84, p = .033, η² = 0.095). Reward participants also had improved cognitive performance on the math portion of the TSST (M = 20.74) in comparison with control participants (M = 13.82; F[44] = 5.44, p = .024, η² = 0.11). The stress-buffering effects of reward were specific to hypothalamic-pituitary-adrenal axis reactivity: the reward and control groups did not differ on psychological perceptions of anticipatory or poststress perceptions, heart rate, or blood pressure responses. Conclusions: This research provides the first evidence linking the experience of reward with reduced stress reactivity in humans and suggests a potential novel reward pathway for coping under stress. Key Words: reward, stress, Trier Social Stress Test, HPA axis.

SBP = systolic blood pressure; DBP = diastolic blood pressure; MAP = mean arterial pressure; TSST = Trier Social Stress Test; RSE = Rosenberg Self-Esteem Scale.

INTRODUCTION

Activation of the hypothalamic-pituitary-adrenal (HPA) axis during acute stress is considered to be important for mobilizing effective fight or flight responses, although studies indicate that lack of or excessive HPA-axis activation during laboratory stressors is associated with increased mental and physical health risks (1). Greater cortisol reactivity to laboratory stress has been linked to an increased risk for upper respiratory tract infections (2), central adiposity (3), and depressive symptoms (4). For example, Cohen and colleagues (2) showed that greater infections (2), central adiposity (3), and depressive symptoms (4). For example, Cohen and colleagues (2) showed that greater cortisol reactivity to a laboratory speech task was associated with a greater incidence of upper respiratory tract infections during a 12-week high-stress follow-up period. Despite these findings, little experimental work has considered psychosocial factors that can moderate cortisol responding to acute stressors. Most research to date has focused on examining how individual differences (e.g., perfectionism, mindfulness, and self-esteem) covary with cortisol reactivity in cross-sectional studies (e.g., Refs. (5–7)) or how anticipatory stress relates to salivary cortisol reactivity and recovery (8). Some promising initial evidence from experimental studies using random assignment shows that psychosocial factors may causally modulate cortisol responses. For example, thinking about an important personal value before acute stress or receiving social support during acute stress can reduce cortisol reactivity (9,10). One interesting possibility raised by this experimental work is that these psychosocial manipulations may reduce cortisol reactivity via a basic reward pathway, although no studies have tested whether rewards can buffer stress responses in humans.

The purpose of the present study was to experimentally evaluate whether a primary sexual reward can reduce cortisol reactivity in men. We elected to use a sexual reward manipulation, given that this image-viewing approach has well-defined psychological and physiological reward response properties in men (e.g., Refs. (11,12)) and erotic visual stimuli are robust activators of reward neurocircuitry (13). There are several lines of evidence that support a reward-cortisol stress-buffering effect. First, it is well known that rewarding activities increase endogeneous opioid release (14), and acute administration of opioids suppresses HPA-axis activity (15). Second, there are reciprocal links between stress and reward pathways—acute stress has been shown to blunt subsequent reward responding (16). Third, studies have shown that primary rewards promote analgesia to stimulated pain (17–19). Finally, perhaps the most suggestive evidence for this reward–stress-buffering link is a recent study in rodents showing that rewarding environments can buffer HPA-axis reactivity to restraint stress (20). Specifically, male rats exposed to 14 consecutive days of reward (consisting of access to a sexually receptive female or sucrose treats) showed blunted corticosterone responses to restraint stress on day 15 compared with control rats. Notably, these effects were shown even when using a calorie-free sweet saccharin drink, suggesting that the experience of a palatable reward is sufficient for stress-dampening effects (20).

Building on this emerging body of work suggesting that rewards can reduce HPA-axis reactivity, we hypothesized that a brief primary sexual reward activity (i.e., viewing erotic images) before an acute stress challenge (the Trier Social Stress Test, or TSST) (21) would reduce cortisol reactivity to this acute stress challenge task. Second, if rewards reduce cortisol responses to the TSST, they may also lead to improved task performance. Thus, a secondary aim of this study was to examine whether experiencing rewards before a stress challenge would improve math performance on the TSST.

METHODS

Participants

Fifty-four healthy heterosexual men, all undergraduate students, were recruited by paper flyers from the campus community. Inclusion criteria for
Independent-samples *t* tests and *χ²* tests determined whether there were significant differences in baseline characteristics between our reward and control groups.

TABLE 1. Baseline Characteristics of Sample

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Reward Condition</th>
<th>Control Condition</th>
<th>Difference Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, M (SD), y</td>
<td>21.73 (3.28)</td>
<td>21.36 (2.41)</td>
<td>t(48) = −0.46, p = .65</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
<td>χ²(4) = 4.49, p = .34</td>
</tr>
<tr>
<td>African American</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Latino/Hispanic</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>5</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Asian American</td>
<td>5</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>6</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Weight, M (SD), lb</td>
<td>162.23 (28.17)</td>
<td>162.86 (40.16)</td>
<td>t(48) = 0.06, p = .95</td>
</tr>
<tr>
<td>Experimental session time of day (2 PM = 0–7 PM = 5), M (SD)</td>
<td>1.89 (1.50)</td>
<td>1.56 (1.17)</td>
<td>t(48) = −0.86, p = .40</td>
</tr>
<tr>
<td>Do you smoke? (yes/no)</td>
<td></td>
<td></td>
<td>χ²(1) = 0.64, p = .43</td>
</tr>
<tr>
<td>Yes</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>21</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>So far today, how many cigarettes have you smoked? M (SD)</td>
<td>0.05 (0.21)</td>
<td>0.39 (1.89)</td>
<td>t(48) = 0.86, p = .40</td>
</tr>
<tr>
<td>In the past hour, have you had a cup of coffee or other caffeinated drink? (yes/no)</td>
<td></td>
<td></td>
<td>χ²(1) = 0.06, p = .80</td>
</tr>
<tr>
<td>Yes</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>20</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Today have you taken any prescription drugs? (yes/no)</td>
<td></td>
<td></td>
<td>χ²(1) = 0.80, p = .37</td>
</tr>
<tr>
<td>Yes</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>22</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Did you eat breakfast today? (yes/no)</td>
<td></td>
<td></td>
<td>χ²(1) = 0.41, p = .52</td>
</tr>
<tr>
<td>Yes</td>
<td>9</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>13</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Do you become easily sexually aroused? (1 = never to 5 = always), M (SD)</td>
<td>3.55 (0.74)</td>
<td>3.39 (0.50)</td>
<td>t(48) = −0.83, p = .41</td>
</tr>
<tr>
<td>Self-esteem (RSE composite score, M (SD)</td>
<td>32.14 (5.09)</td>
<td>31.96 (5.28)</td>
<td>t(47) = −0.12, p = .91</td>
</tr>
<tr>
<td>Anhedonia (SHAPS composite) score, M (SD)</td>
<td>1.09 (1.85)</td>
<td>1.32 (1.63)</td>
<td>t(48) = 0.47, p = .64</td>
</tr>
<tr>
<td>Social support (ISEL composite), M (SD)</td>
<td>38.47 (4.43)</td>
<td>38.86 (5.54)</td>
<td>t(48) = 0.27, p = .79</td>
</tr>
<tr>
<td>Life event stress over the last 6 mo (overall LES score), M (SD)</td>
<td>15.00 (10.73)</td>
<td>11.46 (6.43)</td>
<td>t(48) = −1.37, p = .18</td>
</tr>
</tbody>
</table>

M = mean; SD = standard deviation; RSE = 10-item Rosenberg Self-Esteem Scale; SHAPS = Snaith-Hamilton Pleasure Scale; ISEL = 12-item Interpersonal Support Evaluation List; LES = Life Experiences Survey.

Procedure

All participants completed the experimental tasks between 2 and 7 PM, which provided a control for diurnal variation. Upon arriving, participants were informed that they would complete two unrelated studies (one was about understanding physiological responses to performance tasks and the other was about rating a new stimulus set of images). Participants then provided written informed consent, confirmed their study eligibility and willingness to view erotic images, completed individual difference measures, and were fitted with a blood pressure cuff on the brachial artery of their nondominant arm for baseline measurement of blood pressure and heart rate (HR). Thirty-five minutes after arriving for the experimental session, a baseline saliva sample was collected. Participants then heard prerecorded instructions explaining the upcoming speech performance activity and were given 5 minutes to mentally prepare. The participant was informed that the performance evaluators were running late and asked if they would be willing to complete the second unrelated pilot study (the images task) while waiting for the evaluators (all participants agreed). The purpose of this procedure was to minimize any demand characteristics or participant expectancies that could arise if participants made a link between the reward task and the subsequent stress task. Participants were randomly assigned to view either mildly erotic images (reward condition) or view neutral images of mixed-sex couples (control condition), and the experimenter remained blind to participant condition. As a manipulation check, participants were asked to provide ratings of their sexual arousal to each image (and were told that they were doing this so that the images could be evaluated for use in a future experiment). The images in both conditions consisted of 30 images of heterosexual couples that were presented in a random order to participants (each image was presented for 5 seconds). The images in the reward condition consisted of partially nude couples engaging in sexual behaviors, whereas the images in the control condition consisted of couples engaging in day-to-day behaviors (e.g., drinking wine together).

After viewing the set of images, participants completed an anticipatory stress appraisal measure, which took approximately 3 minutes to administer, and then completed a 5-minute speech addressing why they would be a good
REWARDS AND STRESS

administrative assistant for a hypothetical job in the psychology department, followed by 5 minutes of difficult mental arithmetic (i.e., counting backwards from 2083 by 17s) in front of two evaluators trained to be cold and nonaccepting. The evaluators interrupted participants during their speech to ask questions and pointed out mistakes during the arithmetic task, after which participants were instructed to restart counting from 2083. Participants were instructed on several occasions by the evaluators to sit as still as possible in the chair and to maintain eye contact with the evaluators throughout the speech and arithmetic tasks. Our stress challenge activities were designed to follow procedures used in the TSST (21), which robustly elicits cardiovascular and HPA-axis activation. To assess cognitive math performance, the evaluators (who were blind to participant study condition) recorded how many consecutive numbers the participant recited correctly without a mistake during the arithmetic task.

The participants completed a final set of questionnaires, including their poststress perceptions. Saliva samples were acquired at 25 and 35 minutes after the start of the performance task (22). Participants were then probed for suspicion of the evaluators and any connection between the images and performance tasks and were fully debriefed. A final saliva sample was taken at the conclusion of the study, 60 minutes after the start of the performance task.

Measures
Questionnaires
Anticipatory and posttask stress were assessed using the Primary Appraisal–Secondary Appraisal questionnaire (23). This 16-item measure assesses stress appraisals, including perceptions of threat (study α = .86), challenge (study α = .47), self-concept of abilities (study α = .79), control expectancies (study α = .45), primary appraisal (e.g., “I find this situation very unpleasant”; study α = .79), and secondary appraisal (e.g., “In this situation I know what I can do”; study α = .70), and a composite stress index.

State positive and negative affect scores were computed from participants’ ratings on the 10-item positive (α = .85) and negative affect (α = .90) scales of the Positive and Negative Affect Schedule (24). As an additional test of our primary sexual reward manipulation, we also included an additional item embedded in this list of affect adjectives, “aroused sexually,” which was scored separately as a single-item measure of sexual arousal. On the affect measures, participants rated the extent to which they were experiencing each feeling at the present moment from 1 (very slightly or not at all) to 5 (extremely).

To test for success of randomization, we included several individual difference measures. These included a measure of trait self-esteem using the Rosenberg Self-Esteem Scale (α = .87) (25), a measure of anhedonia (inability to experience pleasure) using the Snath-Hamilton Pleasure Scale (α = .69) (26), a measure of social support using the Interpersonal Support Evaluation List (α = .60) (27), and life event stress using the Life Experiences Survey (total positive and [absolute valued] negative life event perceptions were summed into a composite life change score) (28).

Cortisol and Cardiovascular Measures
Salivary cortisol was collected using a Salivette (Rommersdorf, Germany). All Salivettes were frozen at −20°C in a locked and secure laboratory freezer. Participants kept the Salivette under their tongue for 2 minutes during each collection period and did not touch the sample with their hands. At the conclusion of the experiment, the samples were shipped on dry ice to a professional laboratory in Dresden, Germany, specializing in cortisol measurement. At this laboratory, cortisol was measured using a chemoluminescence immunoassay with high sensitivity (IBL International, Hamburg, Germany). Intra-assay and interassay coefficients of variation were below 10%. A measure of oscillometric blood pressure was collected using an automatic sphygmomanometer (Dinamap Carescapes V100; General Electric Company, GE, Helsinki, Finland). Systolic (SBP) and diastolic (DBP) blood pressure and HR were recorded with this device at 2-minute intervals. Participants remained seated throughout the collection of all physiological measures.

Statistical Analysis
All analyses of the present data were conducted using the SPSS 19.0 software package (IBM, Armonk, NY). The statistical tests used to analyze the data consisted of t tests, between-participant analyses of covariance (ANCOVAs) and mixed-model analyses of variance and ANCOVAs. For primary results, η² effect size statistics were calculated and reported. A total area under the curve with respect to increase (AUC-I) cortisol measure was calculated using the trapezoidal formula of Pruessner et al. (29), using the following equation: AUC-I = ((Cort_T2 + Cort_T1)/2 + 45 + (Cort_T3 + Cort_T2)/2 + 25 + (Cort_T4 + Cort_T3)/2 * 10) − (Cort_T1 * 45 + 25 + 10)). Note that the AUC-I result subtracts out the baseline (or ground) cortisol level, leaving area under the curve from the TSST-driven cortisol increase.

RESULTS
Preliminary Analyses
To test the success of randomization, we compared our reward and control groups on measured characteristics before randomization. As shown in Table 1, our randomization was successful because there were no significant differences between the two groups. As a manipulation check, we tested whether participants rated the reward images as more sexually arousing compared with the control images, which was confirmed (t(45) = −8.48, p < .001; control M [standard error (SE) = 1.42 [0.11] of 5, reward M [SE] = 3.02 [0.16]). We also tested whether reward participants had increases in sexual arousal ratings from before to after viewing the images, compared with participants in the control condition. As expected, we found that participants in the reward condition had increases in self-reported sexual arousal before and after viewing of the images, compared with control participants (condition × time interaction: F(1,47) = 20.29, p < .001, η² = 0.30) (Table 2). The study manipulation effects were specific to sexual reward; we did not observe a significant condition × time interaction for change in general state positive (p = .31) or negative (p = .52) affect between the reward and the control groups (see Table 2).

Cortisol and Cardiovascular Measures
To control for diurnal variation, we ran all study sessions between 2 and 7 PM, and as an additional control, all cortisol analyses included time of day of the first saliva sample as a covariate. We first conducted a one-way ANCOVA testing for condition differences on total AUC-I cortisol responses,

| TABLE 2. Sexual Arousal, Positive Affect, and Negative Affect ANOVA Means and SEs |
|-----------------------------------|---------|---------|-----|-----|
| | Mean Reward | SE | Mean Control | SE | F | p |
| Sexual arousal | | | | | | |
| Preimages | 1.57 | 0.201 | 1.57 | 0.174 | | |
| Postimages | 2.62 | 0.225 | 1.50 | 0.195 | F(1,47) = 20.29, <.001 |
| Positive affect | | | | | | |
| Preimages | 29.38 | 1.779 | 27.82 | 1.541 | | |
| Postimages | 28.33 | 1.908 | 25.21 | 1.652 | F(1,47) = 1.04, .31 |
| Negative affect | | | | | | |
| Preimages | 13.48 | 1.150 | 15.04 | 0.996 | | |
| Postimages | 16.48 | 1.384 | 16.96 | 1.198 | F(1,47) = 0.42, .52 |

ANOVA = analyses of variance; SE = standard error.
Scores on each item can range from 1 (very slightly or not at all) to 5 (extremely). Positive and negative affect scores are derived from the Positive and Negative Affect Schedule.
controlling for time of day. Consistent with our primary study prediction, we found that participants in the reward group (M [SE] = 363.46 [149.17] nM) had a significantly lower total cortisol response to the TSST compared with the control group participants (M [SE] = 807.06 [134.54] nM) \((F(1,46) = 4.84, \ p = .033, \ \eta^2 = 0.095)\). We primarily used an all-female evaluative panel during the speech/math tasks, but there were instances where we used a mixed-sex panel. We note that the reward manipulation effect was also significant when we further controlled for the sex composition of our evaluative panel \((F(1,44) = 4.28, \ p = .045, \ \eta^2 = 0.09)\). To further probe this cortisol effect, we conducted a repeated-measures ANCOVA, and as expected, we observed a significant experimental condition \times time interaction on cortisol responses \((F(1,46) = 4.32, \ p = .006, \ \eta^2 = 0.086)\) (Fig. 1). As shown in Figure 1, this interaction was driven by differences in peak cortisol reactivity to the TSST; planned pairwise comparisons showed that participants in the reward group had lower peak cortisol responses at 25 minutes \((M_{\text{difference}} = 7.01 \text{ nM}, \ p = .057)\) and at 35 minutes poststress task onset \((M_{\text{difference}} = 6.03 \text{ nM}, \ p = .054)\). Our randomization procedure equalized the reward and control groups, but as an additional test, we used each measured variable in Table 1 as a covariate in a series of repeated-measures ANCOVAs (as described previously), and their inclusion did not appreciably affect the observed experimental condition \times time interaction on cortisol responses (all \(p\) values remained significant at \(<.05\)).

Figure 1. Salivary cortisol levels in the reward and control groups. Error bars reflect SEs around the mean. Pairwise differences between groups were significant at the \(p = .057\) level at both the 25- and 35-minute sample time points. SE = standard error.

Figure 2. A, Average heart rate during the baseline, preparation, reward manipulation, stress, and recovery periods in the reward and control groups. Error bars reflect SEs around the mean. B, Average systolic blood pressure during the baseline, preparation, reward manipulation, stress, and recovery periods in the reward and control groups. Error bars reflect SEs around the mean. C, Average diastolic blood pressure during the baseline, preparation, reward manipulation, stress, and recovery periods in the reward and control groups. Error bars reflect SEs around the mean. SE = standard error; bpm = beats per minute.
We also tested whether the reward buffered HR, SBP, and DBP responses to stress. Although we observed significant increases in HR ($F(1, 43) = 34.96$, $p < .001$, $\eta^2 = 0.448$), SBP ($F(1, 43) = 99.71$, $p < .001$, $\eta^2 = 0.699$), and DBP ($F(1, 43) = 102.13$, $p < .001$, $\eta^2 = 0.70$) over time in both groups, these differences were not significant between conditions (see Fig. 2, A–C).

Anticipatory Stress Appraisal Analyses

It is possible that the effects of experimental rewards on cortisol responses may occur by modulating psychological appraisals in anticipation of, or in response to, the stress challenge task. To evaluate this, participants completed a measure of anticipatory stress appraisal after completing the reward task (and immediately before starting the stress challenge task), as well as a poststress perceptions measure after completing the stress challenge. As shown in Table 3, we found no evidence that the reward manipulation affected psychological appraisals of stress at either time point.

Stress Task Performance Analyses

Finally, to evaluate whether reward boosts cognitive performance under stress, we conducted a one-way ANCOVA comparing the number of digit responses recited correctly during the calculation portion of the math task, again controlling for time of day. Reward boosted cognitive performance. Specifically, the reward group ($M [SE] = 20.74 [2.23]$ numbers recited) ($F(44) = 5.44$, $p = .024$, $\eta^2 = 0.11$). We note that one participant whose arithmetic performance was more than 2 standard deviations above the mean was excluded from this analysis. (This participant was in the reward condition and would increase the magnitude of the reward performance effect if he were included.)

DISCUSSION

The present study indicated that a brief primary sexual reward task buffered cortisol responses and improved cognitive performance on a demanding social stress task. Although previous work suggests that rewarding environments can reduce HPA-axis activity to restraint stress in rodents (20), our work demonstrates this effect for the first time in human male volunteers. Moreover, our findings suggest that the cortisol-buffering effects of rewards can occur in response to even a brief experimental reward manipulation. One potential implication of these results is that rewarding activities may be a promising approach for proactively coping with upcoming stressors (30). However, it is important to note that we did not assess reward as a deliberate coping strategy for managing an upcoming stressor in this study; participants in the present study were not aware of any link between the reward task and the stress challenge performance tasks (they were told that the reward task was for a separate unrelated pilot study). We elected to use this procedure to eliminate a potential procedural confound in our study. Specifically, informing participants of an explicit link between the two tasks may have produced positive expectancies...
for stress-buffering effects in the reward condition (e.g., Ref. (31)).

A notable strength of the present study was our experimental approach in evaluating the causal relationship between reward and subsequent cortisol reactivity to the TSST. We carefully matched our rewarding stimuli in both groups such that participants viewed the same number of couples in both picture sets; thus, it is unlikely that we inadvertently primed social support (a potential alternative explanation) (cf. Ref. (32)). In addition, it is possible that participants in the reward group simply were more distracted during the stress challenge tasks than participants in the control group. However, our performance data do not support this explanation. If participants in the reward condition were distracted, then they should have had worse performance on the math portion of the TSST, when, in fact, participants in the reward condition had better math performance than did those in the control condition. The improved cognitive (math) performance that we observed in our reward group suggests that our primary sexual reward activity may buffer social evaluative threat, reduce anxiety-related arousal, and boost problem-focused coping during the performance task, although we note that these hypotheses are speculative and should be tested in future studies.

An important future research direction will be to determine the biopsychosocial pathways linking rewards with reduced HPA-axis activation during acute stress. We did not observe evidence for a psychological appraisal or affect mechanism. Specifically, we observed no significant condition differences on anticipatory or poststress appraisals, nor did we find condition differences in state positive affect or negative affect. Rather, our effects were specific to a sexual reward pathway. In the present study, participants indicated being more sexually aroused in the reward condition compared with the control condition after viewing the images. This primary reward pathway suggests several candidate neurobiological pathways that may explain how rewards reduce cortisol reactivity to the TSST. First, it is possible that our reward task activated the HPA axis (33), resulting in negative feedback inhibition of the HPA axis during the subsequent TSST challenge tasks (34) (cf. Refs. (35,36)). Similarly, it may be that rewards trigger other neuroendocrine cascades that can inhibit HPA-axis activity. For example, rewarding stimuli can increase circulating levels of testosterone (37) and oxytocin (38), and both hormones have been linked with HPA-axis inhibition (39–42). We did not find strong evidence for reward effects on markers of autonomic nervous system activity (HR, blood pressure), but sympathetic nervous system pathways may be important mechanisms for reward effects on stress (e.g., Refs. (12,20)). Finally, it may be that rewards buffer cortisol responses via an endogenous opioid HPA-axis inhibition pathway. Rewarding activities can activate endogenous opioid neurotransmission, and opioids are known to suppress HPA-axis activity (15). Evaluating each of these candidate neurobiological reward-stress pathways experimentally is an exciting direction for new studies. For example, if these reward-cortisol effects are explained by an endogenous opioid pathway, then administering a nonspecific opioid receptor antagonist (e.g., naloxone) should eliminate the effects of rewards on buffering cortisol responses to acute stress.

Our study provides an initial demonstration of the stress-buffering effects of a primary sexual reward and suggests new questions for future research. First, we have offered some initial discussion about potential candidate pathways linking rewards with their stress-buffering effects, but more research is needed to test these mechanistic hypotheses. Second, it is currently unknown whether all rewards buffer cortisol responses to stress. Our work described here used a primary reward (sex), but more research is needed to test whether other primary rewards (e.g., appetitive foods) or secondary rewards (e.g., money) can produce comparable effects in human volunteers. (Consistent with the idea that secondary rewards buffer stress, a previous study showed that reflecting on an important personal value in a self-affirmation activity reduced cortisol responses to the TSST (9)). Also, it will be important to test whether the psychological perception of a reward stimulus (e.g., learning, wanting, or liking) is critical for stress-buffering effects (43). Our initial approach was to first to demonstrate this effect in men, who show robust reward responses to erotic visual stimuli (e.g., Ref. (44)). Future studies should determine whether these effects extend to women.

CONCLUSIONS

Our work provides an initial indication that rewarding activities can reduce cortisol reactivity and boost cognitive performance during acute stressors. This finding may have applied implications for helping people use rewarding activities to cope with upcoming stressors, and this research suggests new directions for exploring basic brain-reward pathways in modulating HPA-axis responses to stress.

We thank the research assistants in the Health and Human Performance Laboratory for their help and feedback.

Source of Funding and Conflicts of Interests: This research was supported by the Pittsburgh Life Sciences Greenhouse Opportunity Fund and National Science Foundation Grant #BCS-0924387. The authors report no conflicts of interests.

REFERENCES

REWARDS AND STRESS

Copyright © 2013 by the American Psychosomatic Society. Unauthorized reproduction of this article is prohibited.