The Role of Perceptual Dimensions in Auditory Category Learning

Casey L. Roark and Lori L. Holt
Carnegie Mellon University Department of Psychology and the Center for the Neural Basis of Cognition

Introduction

- Dual systems of category learning
 • Competition between Verbal and Implicit Systems (COVIS) (Ashby, Alfonso-Reese, Turken & Waldron, 1998; Yi, Maddox, Mumford, & Chandrasekaran, 2014)
 • Information-Integration (II): Procedural/implicit system; uses the tail of the caudate nucleus
 • Requires pre-decisional integration of the two dimensions
 • Rule-based (RB): Explicit system; uses the head of the caudate nucleus and prefrontal cortex
 • Requires selective attention to the relevant dimension

Results

- The dimensions that define the categories affect learning:
 • II, which requires both dimensions be integrated, had high performance from the beginning of training
 • RBMF, which requires selective attention to the MF dimension, had higher performance than RBCF which requires selective attention to the CF dimension

Questions

- How do dimensions defining auditory categories influence category learning?
- Do participants learn to generalize information-integration and rule-based categories?

Methods

Conditions (Stimulus Distributions)

Stimulus Distributions:
1. Information-Integration
2. Rule-Based: Modulation Frequency
3. Rule-Based: Center Frequency

Task: Systematic Multimodal Association with Feedback (SMAF) task

Procedure

Participants

30 Carnegie Mellon University undergraduates (II: n = 10, RBMF: n = 9, RBCF: n = 11)

Results

- The relevance of dimensions continues into the post-test:
 • There are different patterns of generalization depending on which dimensions are relevant for categorization

Conclusions

- The dimensions that define the categories interact with learning. Rule-based category learning performance depends on which dimension was relevant.
- The patterns of generalization between groups separated information-integration from both rule-based conditions.

Acknowledgements

This work was supported by a grant from the National Institutes of Health to Lori L. Holt (R01DC004674) and a grant from the National Institutes of Health to Casey L. Roark (T32-DC011486).

References