I. Introduction

Mario Rodriguez

PhD, 1992

Professor of Psychology

School of Psychology

University of Pennsylvania

Sheldon Cohen

PhD, 1990

Professor of Psychiatry

Medical College of Pennsylvania

Cancer Research University

Stress, Viral Respiration Infections, and Asthma

10

pp. 193-208

2001: NY, NY: Marcel Dekker

Disease (Cerebral & Behavioral).

Respiratory Infections. Volume 154 in

Gentile and Shorter

192
Stress, Visual Repetition Injuries, and Aesthetics

When controlling environmental demands, people evaluate whether the demands

When controlling environmental demands, people evaluate whether the demands

When controlling environmental demands, people evaluate whether the demands

When controlling environmental demands, people evaluate whether the demands

When controlling environmental demands, people evaluate whether the demands

When controlling environmental demands, people evaluate whether the demands

When controlling environmental demands, people evaluate whether the demands

When controlling environmental demands, people evaluate whether the demands

When controlling environmental demands, people evaluate whether the demands

When controlling environmental demands, people evaluate whether the demands

When controlling environmental demands, people evaluate whether the demands

When controlling environmental demands, people evaluate whether the demands

When controlling environmental demands, people evaluate whether the demands

When controlling environmental demands, people evaluate whether the demands

When controlling environmental demands, people evaluate whether the demands

When controlling environmental demands, people evaluate whether the demands

When controlling environmental demands, people evaluate whether the demands
III. How Could Stress Affect Asthma?

Stress, whether caused by psychological or physical stress, can affect the body in various ways. One of the ways it can affect the body is through the hypothalamic-pituitary-adrenal (HPA) axis. This axis acts as a stress response system and is involved in the body's fight-or-flight response. When the body is under stress, the HPA axis is activated, leading to the release of stress hormones such as cortisol and adrenaline.

These stress hormones can have a range of effects on the body, including changes in blood pressure, heart rate, and immune function. Over time, prolonged activation of the HPA axis can lead to chronic inflammation and a range of health problems, including asthma.

In addition to the HPA axis, stress can also affect the body through the sympathetic nervous system. This system is responsible for the body's fight-or-flight response and is activated during times of stress. When the sympathetic nervous system is overactive, it can lead to chronic inflammation and a range of health problems, including asthma.

Stress can also affect the body through the immune system. Stress hormones can suppress the immune system, making the body more vulnerable to infections and other health problems. This can lead to chronic inflammation and a range of health problems, including asthma.

In summary, stress can affect the body through a variety of mechanisms, including the HPA axis, the sympathetic nervous system, and the immune system. These effects can lead to chronic inflammation and a range of health problems, including asthma.

197 Cohen and Kessler
Acute exercise enhances functional interactions between polypeptide receptors
continuing soon to show new functional interactions with various receptors.

(1) Disruption of cell-surface interactions, which are mediated by physical and/or chemical bonds, can lead to cell death or morphological changes. (2) The disruption of intracellular interactions, which are mediated by protein-protein interactions, can lead to the inactivation of enzymes or the assembly of signaling complexes. (3) The disruption of intercellular interactions, which are mediated by cell-cell junctions, can lead to the loss of cell adhesion or the induction of cell death. (4) The disruption of extracellular interactions, which are mediated by extracellular matrix molecules, can lead to the disruption of tissue organization or the induction of inflammation.

C. Immune Pathways

control of the immune system's response to infection and inflammation. The immune system is composed of a complex network of cells, tissues, and organs that work together to detect and respond to pathogens and other foreign substances. The immune system has two main components: the innate immune system, which provides a non-specific response to pathogens, and the adaptive immune system, which provides a specific response to pathogens. The immune system is under constant surveillance for potential threats, and it is capable of responding rapidly to new or unfamiliar threats. This response is mediated by a variety of mechanisms, including the production of cytokines, chemokines, and other signaling molecules, which can activate or inhibit immune cells. The immune system is also capable of memory, which allows it to respond more quickly and effectively to subsequent exposures to the same pathogen.
D. Respiratory Infections as a Pathway

of Asthma

Respiratory infections in childhood are associated with an increased risk of developing asthma. This association is thought to be mediated by the development of the immune system and the pathways that regulate inflammation and immune response. The timing and frequency of infections during childhood can influence the development of asthma, as well as the expression of asthma symptoms later in life.

Infections during early childhood can lead to the development of persistent airway inflammation, which can result in the thickening of the airway walls and the development of a chronic inflammatory state. This chronic inflammatory state can persist into adulthood and contribute to the development of asthma.

The development of asthma is also influenced by the immune system's response to infections. The immune system plays a critical role in protecting the body from infections, but in some individuals, this response can become dysregulated, leading to persistent inflammation and the development of asthma.

In summary, respiratory infections in childhood can have a significant impact on the development of asthma. Understanding the mechanisms underlying this association is crucial for developing strategies to prevent asthma and improve the quality of life for individuals with this condition.
The expression of foreign proteins changes in response to stress. These changes can lead to the production of proteins that are involved in stress responses. The figure shows the expression of two proteins, A and B, under different stress conditions. Protein A is upregulated in response to heat stress, while protein B is downregulated under the same conditions. This suggest that the stress response is regulated at the level of gene expression.

Protein expression in response to stress is mediated by a number of cellular mechanisms. The figure illustrates the activation of stress response pathways, which include the heat shock response, the unfolded protein response, and the oxidative stress response. These pathways are activated by molecular sensors that detect the presence of stress signals, such as elevated temperature, increased protein misfolding, or oxidative stress.

The figure also shows the role of transcription factors, such as HSF1, in the activation of stress response genes. HSF1 is a heat shock factor that is activated in response to stress signals. Upon activation, HSF1 forms dimers and translocates to the nucleus, where it binds to stress response elements in the DNA and initiates the transcription of stress response genes.

In summary, the expression of foreign proteins in response to stress is a complex process that involves the activation of stress response pathways and the regulation of gene expression. The figure provides a visual representation of this process, highlighting the key components and mechanisms involved in the stress response.

References

203

Cohen and Kordas

Introduction

General Virulence and Targets for Therapy