Thalamocortical Pathways

Virtual Neuroanatomy

October 2nd, 2014
Outline

1. Overview
2. Afferents & Efferents
3. Neurophysiology
4. Neurochemical Systems
5. Physiological Correlates
6. Behavioral Correlates
7. Clinical Pathologies
Overview
Thalamocortical Pathways

• Relays sensory information to cortex
• Integrates information from different sensory modalities
• Projects throughout cortex
Thalamocortical Pathways

- Relays sensory information to cortex
- Integrates information from different sensory modalities
- Projects throughout cortex
 - Emotion

Thalamocortical Pathways

• Relays sensory information to cortex
• Integrates information from different sensory modalities
• Projects throughout cortex
 • Emotion
 • Motor
Thalamocortical Pathways

- Relays sensory information to cortex
- Integrates information from different sensory modalities
- Projects throughout cortex
 - Emotion
 - Motor
 - Somatosensory
Thalamocortical Pathways

• Relays sensory information to cortex
• Integrates information from different sensory modalities
• Projects throughout cortex
 • Emotion
 • Motor
 • Somatosensory
 • Auditory
Thalamocortical Pathways

- Relays sensory information to cortex
- Integrates information from different sensory modalities
- Projects throughout cortex
 - Emotion
 - Motor
 - Somatosensory
 - Auditory
 - Visual

Thalamocortical Pathways

- Relay sensory information to cortex
- Integrate information from different sensory modalities
- Projects throughout cortex
 - Emotion
 - Motor
 - Somatosensory
 - Auditory
 - Visual
 - Association
Thalamic Nuclei

Thalamic Nuclei

Categories of Thalamic Nuclei

• Relay Nuclei
 – Project sensory info to distinct sensorimotor cortical areas

• Association Nuclei
 – Cortico-thalamic-cortical connections, project to association regions of cortex

• Nonspecific Nuclei
 – Project to wide range of cortical regions without topographical organization
 – Also project to specific thalamic nuclei
Afferents & Efferents
Thalamic Inputs

- Relay Nuclei
- Limbic Structures
- Basal Ganglia
- Cerebellum
- Brain Stem Nuclei
- Association Nuclei
- Cortical Association Areas

Figure 12-4 Main connections of the thalamus. Afferent fibers are shown on the left, and efferent fibers are shown on the right.

Premotor Pathway

Basal Ganglia → VA → PMC
Motor Pathway

Cerebellum → Basal Ganglia → VL → M1
Somatosensory Pathway

Brainstem → VP → Postcentral Gyrus
Auditory Pathway

Inferior Colliculus → MGN → Auditory Cortex
Visual Pathway

Optic Tract → LGN → Visual Cortex
Limbic Pathway

Mammillothalamic Tract → AN → Cingulate Cortex
Prefrontal Association Pathway
Parietal-Occ-Temp Assoc. Pathway

Association Cortices
Superior Colliculus

Pulvinar/LP

Parietal-Occipital-Temporal Association Cortex
Path

Layer IV (ipsilateral)
Corona Radiata
Internal Capsule

Neurophysiology
Two Physiological States

• **Tonic Mode**
 - Slightly depolarized
 - Accurately transmits info
 - Focusing attention on stimulus, thought or task

• **Burst Mode**
 - “lookout function”
 - Very sensitive to input
 - Can’t accurately convey input info because of low frequency of bursts

Neurochemical Systems
Neurochemical Systems

• Most thalamic relay neurons are glutamatergic
• More sensory input → faster firing to cortex

Corticothalamic Regulation

- Thin type-1 fibers
 - Modulatory feedback onto sensory relays
- Course type-2 fibers
 - Feedforward mechanism in cortico-thalamo-cortical circuits

Physiological Correlates
Heart Rate & Respiration

- Negative correlation between VP firing and heart rate intervals in cat.
- Thalamic neurons carry information about the magnitude of respiratory activity.

Chen et al. (1992). Resp Phys. 90, 91-113
Behavioral Correlates
Motor Movements

- Somatotopic arrangement of motor movements induced by microstimulation of motor thalamus in primate

Vitek et al. (1996). Journal of Neurophysiology, 72, 2486-95.
Pain Perception

• VPL cells show large response to noxious heat stimulation

Pain Perception

- VPL cells show large response to noxious heat stimulation
- Implicated in attention/arousal to pain stimuli in humans

Auditory Perception

- MGN essential for auditory avoidance conditioning

Visual Attention

• Attention to visual stimuli associated with increased BOLD activation in LGN and visual cortex in human

O’Connor et al. (2002). Nature Neuroscience, 5, 1203-1209.
Clinical Pathologies
Fatal Insomnia

- Accumulation of prion proteins in mediodorsal and anterior thalamic nuclei
 - Disrupted sleep
 - Autonomic hyperactivity
 - Cognitive deficits
 - Motor abnormalities
 - Sudden motor contractions
 - Ataxia (lack of motor coordination)
 - Dysphagia (Difficulty swallowing)

Schizophrenia

- Reduced volume and neuronal density of MD
- Greater mean diffusivity
 - Correlated with working memory performance
- Reduced FA of thalamocortical tracks in chronic patients
- Implicates degeneration of thalamic nuclei in pathophysiology of schizophrenia

Catani et al. (2012). Atlas of Human Brain Connections
Thalamic Pain Syndrome

- VPL/VPM lesions causing damage to spinothalamic fibers
- Thalamic pain: Intense pain triggered by somatosensory stimuli
- Hemianesthesia: Loss of somatic sensation in contralateral head or body
- Sensory ataxia: loss of coordination (due to loss of proprioception)

Bible (2012). Nat Rev Neurology, 8, 412.
Symptoms of Thalamic Injury

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Principal nuclei</th>
<th>Function</th>
<th>Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limbic</td>
<td></td>
<td>Anterior thalamic group
Anterodorsal (AD)
Anteroventral (AV)
Anteromedial (AM)</td>
<td>Amnesia, language difficulties (reduced spontaneous speech, anoma)</td>
</tr>
<tr>
<td>Prefrontal</td>
<td></td>
<td>Medio-dorsal nucleus (MD) and Midline (Mid) group
Drive, motivation, emotion, executive functions, working memory, attention, autonomic and sleep-wake cycle regulation.</td>
<td>Apathy, abulia, disinhibition, working memory deficits, sleep dysregulation</td>
</tr>
<tr>
<td>Association</td>
<td></td>
<td>Ventral group
Anterior (VA)</td>
<td>Dystonia, language impairment (reduced fluency, perseveration, stuttering), behavioural problems</td>
</tr>
<tr>
<td>Premotor</td>
<td></td>
<td>Lateral
– anterior (VLa)
– medial (VLM)
– posterior (VLP)</td>
<td>Ataxia, mild motor weakness, language, memory difficulties</td>
</tr>
<tr>
<td>Motor</td>
<td></td>
<td>Posterior
– lateral (VPi)
– medial (VPm)
– inferior (VPi)</td>
<td></td>
</tr>
<tr>
<td>Somatosensory</td>
<td></td>
<td>Lateral group
Dorsal (LD)
Posterior (LP)
Pulvinar (Pol)</td>
<td>Dejerine-Roussy disease (thalamic pain syndrome); contralateral hemianesthesia (typically for all sensory modalities) of body and limbs (VPI) or head and neck (VPm)</td>
</tr>
<tr>
<td>Par-Occ-Temp</td>
<td></td>
<td>Metathalamus
Lateral geniculate nucleus (LGN)</td>
<td>Impaired visual discrimination, hemispatial neglect, language deficits, psychosis</td>
</tr>
<tr>
<td>Association</td>
<td></td>
<td>Visual
Visual-sensory-motor integration and visual salience (discriminating relevant from irrelevant visual stimuli)</td>
<td>Contralateral homonymous hemianopcia (loss of vision in the same visual field on both eyes)</td>
</tr>
<tr>
<td>Auditory</td>
<td></td>
<td>Medial geniculate nucleus (MGN)</td>
<td>Central deafness</td>
</tr>
</tbody>
</table>
Outline

1. Overview
2. Afferents & Efferents
3. Neurophysiology
4. Neurochemical Systems
5. Physiological Correlates
6. Behavioral Correlates
7. Clinical Pathologies